Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cosscnvepresex Structured version   Visualization version   GIF version

Theorem 1cosscnvepresex 38364
Description: Sufficient condition for a restricted converse epsilon coset to be a set. (Contributed by Peter Mazsa, 24-Sep-2021.)
Assertion
Ref Expression
1cosscnvepresex (𝐴𝑉 → ≀ ( E ↾ 𝐴) ∈ V)

Proof of Theorem 1cosscnvepresex
StepHypRef Expression
1 cnvepresex 38277 . 2 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
2 cossex 38362 . 2 (( E ↾ 𝐴) ∈ V → ≀ ( E ↾ 𝐴) ∈ V)
31, 2syl 17 1 (𝐴𝑉 → ≀ ( E ↾ 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  Vcvv 3477   E cep 5581  ccnv 5682  cres 5685  ccoss 38122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-clab 2711  df-cleq 2725  df-clel 2812  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3433  df-v 3479  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-iun 5000  df-br 5150  df-opab 5212  df-eprel 5582  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-coss 38354
This theorem is referenced by:  elcoeleqvrelsrel  38539  mpets2  38784
  Copyright terms: Public domain W3C validator