Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cosscnvepresex Structured version   Visualization version   GIF version

Theorem 1cosscnvepresex 37279
Description: Sufficient condition for a restricted converse epsilon coset to be a set. (Contributed by Peter Mazsa, 24-Sep-2021.)
Assertion
Ref Expression
1cosscnvepresex (𝐴𝑉 → ≀ ( E ↾ 𝐴) ∈ V)

Proof of Theorem 1cosscnvepresex
StepHypRef Expression
1 cnvepresex 37191 . 2 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
2 cossex 37277 . 2 (( E ↾ 𝐴) ∈ V → ≀ ( E ↾ 𝐴) ∈ V)
31, 2syl 17 1 (𝐴𝑉 → ≀ ( E ↾ 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3474   E cep 5578  ccnv 5674  cres 5677  ccoss 37031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-eprel 5579  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-coss 37269
This theorem is referenced by:  elcoeleqvrelsrel  37454  mpets2  37699
  Copyright terms: Public domain W3C validator