MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbnegg Structured version   Visualization version   GIF version

Theorem csbnegg 11357
Description: Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
csbnegg (𝐴𝑉𝐴 / 𝑥-𝐵 = -𝐴 / 𝑥𝐵)

Proof of Theorem csbnegg
StepHypRef Expression
1 csbov2g 7394 . 2 (𝐴𝑉𝐴 / 𝑥(0 − 𝐵) = (0 − 𝐴 / 𝑥𝐵))
2 df-neg 11347 . . 3 -𝐵 = (0 − 𝐵)
32csbeq2i 3858 . 2 𝐴 / 𝑥-𝐵 = 𝐴 / 𝑥(0 − 𝐵)
4 df-neg 11347 . 2 -𝐴 / 𝑥𝐵 = (0 − 𝐴 / 𝑥𝐵)
51, 3, 43eqtr4g 2791 1 (𝐴𝑉𝐴 / 𝑥-𝐵 = -𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  csb 3850  (class class class)co 7346  0cc0 11006  cmin 11344  -cneg 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-dm 5626  df-iota 6437  df-fv 6489  df-ov 7349  df-neg 11347
This theorem is referenced by:  dvfsum2  25969  renegclALT  39008
  Copyright terms: Public domain W3C validator