![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbnegg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
csbnegg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌-𝐵 = -⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbov2g 7496 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(0 − 𝐵) = (0 − ⦋𝐴 / 𝑥⦌𝐵)) | |
2 | df-neg 11523 | . . 3 ⊢ -𝐵 = (0 − 𝐵) | |
3 | 2 | csbeq2i 3929 | . 2 ⊢ ⦋𝐴 / 𝑥⦌-𝐵 = ⦋𝐴 / 𝑥⦌(0 − 𝐵) |
4 | df-neg 11523 | . 2 ⊢ -⦋𝐴 / 𝑥⦌𝐵 = (0 − ⦋𝐴 / 𝑥⦌𝐵) | |
5 | 1, 3, 4 | 3eqtr4g 2805 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌-𝐵 = -⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⦋csb 3921 (class class class)co 7448 0cc0 11184 − cmin 11520 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 df-neg 11523 |
This theorem is referenced by: dvfsum2 26095 renegclALT 38919 |
Copyright terms: Public domain | W3C validator |