Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbnegg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
csbnegg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌-𝐵 = -⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbov2g 7298 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(0 − 𝐵) = (0 − ⦋𝐴 / 𝑥⦌𝐵)) | |
2 | df-neg 11113 | . . 3 ⊢ -𝐵 = (0 − 𝐵) | |
3 | 2 | csbeq2i 3837 | . 2 ⊢ ⦋𝐴 / 𝑥⦌-𝐵 = ⦋𝐴 / 𝑥⦌(0 − 𝐵) |
4 | df-neg 11113 | . 2 ⊢ -⦋𝐴 / 𝑥⦌𝐵 = (0 − ⦋𝐴 / 𝑥⦌𝐵) | |
5 | 1, 3, 4 | 3eqtr4g 2805 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌-𝐵 = -⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ⦋csb 3829 (class class class)co 7252 0cc0 10777 − cmin 11110 -cneg 11111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-dm 5589 df-iota 6373 df-fv 6423 df-ov 7255 df-neg 11113 |
This theorem is referenced by: dvfsum2 25078 renegclALT 36883 |
Copyright terms: Public domain | W3C validator |