| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbnegg | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| csbnegg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌-𝐵 = -⦋𝐴 / 𝑥⦌𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbov2g 7453 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(0 − 𝐵) = (0 − ⦋𝐴 / 𝑥⦌𝐵)) | |
| 2 | df-neg 11469 | . . 3 ⊢ -𝐵 = (0 − 𝐵) | |
| 3 | 2 | csbeq2i 3882 | . 2 ⊢ ⦋𝐴 / 𝑥⦌-𝐵 = ⦋𝐴 / 𝑥⦌(0 − 𝐵) |
| 4 | df-neg 11469 | . 2 ⊢ -⦋𝐴 / 𝑥⦌𝐵 = (0 − ⦋𝐴 / 𝑥⦌𝐵) | |
| 5 | 1, 3, 4 | 3eqtr4g 2795 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌-𝐵 = -⦋𝐴 / 𝑥⦌𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⦋csb 3874 (class class class)co 7405 0cc0 11129 − cmin 11466 -cneg 11467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-dm 5664 df-iota 6484 df-fv 6539 df-ov 7408 df-neg 11469 |
| This theorem is referenced by: dvfsum2 25993 renegclALT 38981 |
| Copyright terms: Public domain | W3C validator |