![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbnegg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
csbnegg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌-𝐵 = -⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbov2g 7479 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(0 − 𝐵) = (0 − ⦋𝐴 / 𝑥⦌𝐵)) | |
2 | df-neg 11493 | . . 3 ⊢ -𝐵 = (0 − 𝐵) | |
3 | 2 | csbeq2i 3916 | . 2 ⊢ ⦋𝐴 / 𝑥⦌-𝐵 = ⦋𝐴 / 𝑥⦌(0 − 𝐵) |
4 | df-neg 11493 | . 2 ⊢ -⦋𝐴 / 𝑥⦌𝐵 = (0 − ⦋𝐴 / 𝑥⦌𝐵) | |
5 | 1, 3, 4 | 3eqtr4g 2800 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌-𝐵 = -⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⦋csb 3908 (class class class)co 7431 0cc0 11153 − cmin 11490 -cneg 11491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-dm 5699 df-iota 6516 df-fv 6571 df-ov 7434 df-neg 11493 |
This theorem is referenced by: dvfsum2 26090 renegclALT 38945 |
Copyright terms: Public domain | W3C validator |