MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbnegg Structured version   Visualization version   GIF version

Theorem csbnegg 11218
Description: Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
csbnegg (𝐴𝑉𝐴 / 𝑥-𝐵 = -𝐴 / 𝑥𝐵)

Proof of Theorem csbnegg
StepHypRef Expression
1 csbov2g 7321 . 2 (𝐴𝑉𝐴 / 𝑥(0 − 𝐵) = (0 − 𝐴 / 𝑥𝐵))
2 df-neg 11208 . . 3 -𝐵 = (0 − 𝐵)
32csbeq2i 3840 . 2 𝐴 / 𝑥-𝐵 = 𝐴 / 𝑥(0 − 𝐵)
4 df-neg 11208 . 2 -𝐴 / 𝑥𝐵 = (0 − 𝐴 / 𝑥𝐵)
51, 3, 43eqtr4g 2803 1 (𝐴𝑉𝐴 / 𝑥-𝐵 = -𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  csb 3832  (class class class)co 7275  0cc0 10871  cmin 11205  -cneg 11206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-dm 5599  df-iota 6391  df-fv 6441  df-ov 7278  df-neg 11208
This theorem is referenced by:  dvfsum2  25198  renegclALT  36977
  Copyright terms: Public domain W3C validator