| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbov2g | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbov2g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵𝐹⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbov12g 7392 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵𝐹⦋𝐴 / 𝑥⦌𝐶)) | |
| 2 | csbconstg 3869 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
| 3 | 2 | oveq1d 7361 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵𝐹⦋𝐴 / 𝑥⦌𝐶)) |
| 4 | 1, 3 | eqtrd 2766 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵𝐹⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⦋csb 3850 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-dm 5626 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: csbnegg 11357 prmgaplem7 16969 matgsum 22353 scmatscm 22429 pm2mpf1lem 22710 pm2mpcoe1 22716 pm2mpmhmlem2 22735 monmat2matmon 22740 divcncf 25376 logbmpt 26726 finxpreclem4 37434 tfsconcatfv 43380 cotrclrcl 43781 ply1mulgsumlem3 48426 ply1mulgsumlem4 48427 ply1mulgsum 48428 |
| Copyright terms: Public domain | W3C validator |