MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbov2g Structured version   Visualization version   GIF version

Theorem csbov2g 7402
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
Assertion
Ref Expression
csbov2g (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐹𝐴 / 𝑥𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbov2g
StepHypRef Expression
1 csbov12g 7400 . 2 (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶))
2 csbconstg 3865 . . 3 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
32oveq1d 7369 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶) = (𝐵𝐹𝐴 / 𝑥𝐶))
41, 3eqtrd 2768 1 (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐹𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  csb 3846  (class class class)co 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-dm 5631  df-iota 6444  df-fv 6496  df-ov 7357
This theorem is referenced by:  csbnegg  11366  prmgaplem7  16973  matgsum  22355  scmatscm  22431  pm2mpf1lem  22712  pm2mpcoe1  22718  pm2mpmhmlem2  22737  monmat2matmon  22742  divcncf  25378  logbmpt  26728  finxpreclem4  37461  tfsconcatfv  43461  cotrclrcl  43862  ply1mulgsumlem3  48516  ply1mulgsumlem4  48517  ply1mulgsum  48518
  Copyright terms: Public domain W3C validator