MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbov2g Structured version   Visualization version   GIF version

Theorem csbov2g 7496
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
Assertion
Ref Expression
csbov2g (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐹𝐴 / 𝑥𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbov2g
StepHypRef Expression
1 csbov12g 7494 . 2 (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶))
2 csbconstg 3940 . . 3 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
32oveq1d 7463 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶) = (𝐵𝐹𝐴 / 𝑥𝐶))
41, 3eqtrd 2780 1 (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐹𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  csb 3921  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-dm 5710  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  csbnegg  11533  prmgaplem7  17104  matgsum  22464  scmatscm  22540  pm2mpf1lem  22821  pm2mpcoe1  22827  pm2mpmhmlem2  22846  monmat2matmon  22851  divcncf  25501  logbmpt  26849  finxpreclem4  37360  tfsconcatfv  43303  cotrclrcl  43704  ply1mulgsumlem3  48117  ply1mulgsumlem4  48118  ply1mulgsum  48119
  Copyright terms: Public domain W3C validator