| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbov2g | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbov2g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵𝐹⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbov12g 7399 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵𝐹⦋𝐴 / 𝑥⦌𝐶)) | |
| 2 | csbconstg 3872 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
| 3 | 2 | oveq1d 7368 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵𝐹⦋𝐴 / 𝑥⦌𝐶)) |
| 4 | 1, 3 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵𝐹⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⦋csb 3853 (class class class)co 7353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-dm 5633 df-iota 6442 df-fv 6494 df-ov 7356 |
| This theorem is referenced by: csbnegg 11378 prmgaplem7 16987 matgsum 22340 scmatscm 22416 pm2mpf1lem 22697 pm2mpcoe1 22703 pm2mpmhmlem2 22722 monmat2matmon 22727 divcncf 25364 logbmpt 26714 finxpreclem4 37370 tfsconcatfv 43317 cotrclrcl 43718 ply1mulgsumlem3 48377 ply1mulgsumlem4 48378 ply1mulgsum 48379 |
| Copyright terms: Public domain | W3C validator |