![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbov2g | Structured version Visualization version GIF version |
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) |
Ref | Expression |
---|---|
csbov2g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵𝐹⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbov12g 7477 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵𝐹⦋𝐴 / 𝑥⦌𝐶)) | |
2 | csbconstg 3927 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
3 | 2 | oveq1d 7446 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵𝐹⦋𝐴 / 𝑥⦌𝐶)) |
4 | 1, 3 | eqtrd 2775 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵𝐹⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⦋csb 3908 (class class class)co 7431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-dm 5699 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: csbnegg 11503 prmgaplem7 17091 matgsum 22459 scmatscm 22535 pm2mpf1lem 22816 pm2mpcoe1 22822 pm2mpmhmlem2 22841 monmat2matmon 22846 divcncf 25496 logbmpt 26846 finxpreclem4 37377 tfsconcatfv 43331 cotrclrcl 43732 ply1mulgsumlem3 48234 ply1mulgsumlem4 48235 ply1mulgsum 48236 |
Copyright terms: Public domain | W3C validator |