MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbov2g Structured version   Visualization version   GIF version

Theorem csbov2g 7438
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
Assertion
Ref Expression
csbov2g (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐹𝐴 / 𝑥𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbov2g
StepHypRef Expression
1 csbov12g 7436 . 2 (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶))
2 csbconstg 3884 . . 3 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
32oveq1d 7405 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶) = (𝐵𝐹𝐴 / 𝑥𝐶))
41, 3eqtrd 2765 1 (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐹𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  csb 3865  (class class class)co 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-dm 5651  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  csbnegg  11425  prmgaplem7  17035  matgsum  22331  scmatscm  22407  pm2mpf1lem  22688  pm2mpcoe1  22694  pm2mpmhmlem2  22713  monmat2matmon  22718  divcncf  25355  logbmpt  26705  finxpreclem4  37389  tfsconcatfv  43337  cotrclrcl  43738  ply1mulgsumlem3  48381  ply1mulgsumlem4  48382  ply1mulgsum  48383
  Copyright terms: Public domain W3C validator