MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsum2 Structured version   Visualization version   GIF version

Theorem dvfsum2 26090
Description: The reverse of dvfsumrlim 26087, when comparing a finite sum of increasing terms to an integral. In this case there is no point in stating the limit properties, because the terms of the sum aren't approaching zero, but there is nevertheless still a natural asymptotic statement that can be made. (Contributed by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
dvfsum2.s 𝑆 = (𝑇(,)+∞)
dvfsum2.z 𝑍 = (ℤ𝑀)
dvfsum2.m (𝜑𝑀 ∈ ℤ)
dvfsum2.d (𝜑𝐷 ∈ ℝ)
dvfsum2.u (𝜑𝑈 ∈ ℝ*)
dvfsum2.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum2.t (𝜑𝑇 ∈ ℝ)
dvfsum2.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum2.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum2.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum2.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum2.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum2.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐵𝐶)
dvfsum2.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsum2.0 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
dvfsum2.1 (𝜑𝑋𝑆)
dvfsum2.2 (𝜑𝑌𝑆)
dvfsum2.3 (𝜑𝐷𝑋)
dvfsum2.4 (𝜑𝑋𝑌)
dvfsum2.5 (𝜑𝑌𝑈)
dvfsum2.e (𝑥 = 𝑌𝐵 = 𝐸)
Assertion
Ref Expression
dvfsum2 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) ≤ 𝐸)
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑥,𝐸   𝑘,𝑀,𝑥   𝑆,𝑘,𝑥   𝑘,𝑋,𝑥   𝑘,𝑌,𝑥   𝑥,𝑇   𝑈,𝑘,𝑥   𝑥,𝑉   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐸(𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑘)   𝑍(𝑘)

Proof of Theorem dvfsum2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvfsum2.2 . . . . . 6 (𝜑𝑌𝑆)
2 fzfid 14011 . . . . . . . 8 (𝜑 → (𝑀...(⌊‘𝑌)) ∈ Fin)
3 dvfsum2.b2 . . . . . . . . . 10 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
43ralrimiva 3144 . . . . . . . . 9 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℝ)
5 elfzuz 13557 . . . . . . . . . 10 (𝑘 ∈ (𝑀...(⌊‘𝑌)) → 𝑘 ∈ (ℤ𝑀))
6 dvfsum2.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
75, 6eleqtrrdi 2850 . . . . . . . . 9 (𝑘 ∈ (𝑀...(⌊‘𝑌)) → 𝑘𝑍)
8 dvfsum2.c . . . . . . . . . . 11 (𝑥 = 𝑘𝐵 = 𝐶)
98eleq1d 2824 . . . . . . . . . 10 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
109rspccva 3621 . . . . . . . . 9 ((∀𝑥𝑍 𝐵 ∈ ℝ ∧ 𝑘𝑍) → 𝐶 ∈ ℝ)
114, 7, 10syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑌))) → 𝐶 ∈ ℝ)
122, 11fsumrecl 15767 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 ∈ ℝ)
13 dvfsum2.a . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
1413ralrimiva 3144 . . . . . . . 8 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
15 nfcsb1v 3933 . . . . . . . . . 10 𝑥𝑌 / 𝑥𝐴
1615nfel1 2920 . . . . . . . . 9 𝑥𝑌 / 𝑥𝐴 ∈ ℝ
17 csbeq1a 3922 . . . . . . . . . 10 (𝑥 = 𝑌𝐴 = 𝑌 / 𝑥𝐴)
1817eleq1d 2824 . . . . . . . . 9 (𝑥 = 𝑌 → (𝐴 ∈ ℝ ↔ 𝑌 / 𝑥𝐴 ∈ ℝ))
1916, 18rspc 3610 . . . . . . . 8 (𝑌𝑆 → (∀𝑥𝑆 𝐴 ∈ ℝ → 𝑌 / 𝑥𝐴 ∈ ℝ))
201, 14, 19sylc 65 . . . . . . 7 (𝜑𝑌 / 𝑥𝐴 ∈ ℝ)
2112, 20resubcld 11689 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℝ)
22 nfcv 2903 . . . . . . 7 𝑥𝑌
23 nfcv 2903 . . . . . . . 8 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶
24 nfcv 2903 . . . . . . . 8 𝑥
2523, 24, 15nfov 7461 . . . . . . 7 𝑥𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)
26 fveq2 6907 . . . . . . . . . 10 (𝑥 = 𝑌 → (⌊‘𝑥) = (⌊‘𝑌))
2726oveq2d 7447 . . . . . . . . 9 (𝑥 = 𝑌 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑌)))
2827sumeq1d 15733 . . . . . . . 8 (𝑥 = 𝑌 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶)
2928, 17oveq12d 7449 . . . . . . 7 (𝑥 = 𝑌 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
30 dvfsum2.g . . . . . . 7 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
3122, 25, 29, 30fvmptf 7037 . . . . . 6 ((𝑌𝑆 ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℝ) → (𝐺𝑌) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
321, 21, 31syl2anc 584 . . . . 5 (𝜑 → (𝐺𝑌) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
33 dvfsum2.1 . . . . . 6 (𝜑𝑋𝑆)
34 fzfid 14011 . . . . . . . 8 (𝜑 → (𝑀...(⌊‘𝑋)) ∈ Fin)
35 elfzuz 13557 . . . . . . . . . 10 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘 ∈ (ℤ𝑀))
3635, 6eleqtrrdi 2850 . . . . . . . . 9 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘𝑍)
374, 36, 10syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℝ)
3834, 37fsumrecl 15767 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℝ)
39 nfcsb1v 3933 . . . . . . . . . 10 𝑥𝑋 / 𝑥𝐴
4039nfel1 2920 . . . . . . . . 9 𝑥𝑋 / 𝑥𝐴 ∈ ℝ
41 csbeq1a 3922 . . . . . . . . . 10 (𝑥 = 𝑋𝐴 = 𝑋 / 𝑥𝐴)
4241eleq1d 2824 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐴 ∈ ℝ ↔ 𝑋 / 𝑥𝐴 ∈ ℝ))
4340, 42rspc 3610 . . . . . . . 8 (𝑋𝑆 → (∀𝑥𝑆 𝐴 ∈ ℝ → 𝑋 / 𝑥𝐴 ∈ ℝ))
4433, 14, 43sylc 65 . . . . . . 7 (𝜑𝑋 / 𝑥𝐴 ∈ ℝ)
4538, 44resubcld 11689 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℝ)
46 nfcv 2903 . . . . . . 7 𝑥𝑋
47 nfcv 2903 . . . . . . . 8 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶
4847, 24, 39nfov 7461 . . . . . . 7 𝑥𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)
49 fveq2 6907 . . . . . . . . . 10 (𝑥 = 𝑋 → (⌊‘𝑥) = (⌊‘𝑋))
5049oveq2d 7447 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑋)))
5150sumeq1d 15733 . . . . . . . 8 (𝑥 = 𝑋 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
5251, 41oveq12d 7449 . . . . . . 7 (𝑥 = 𝑋 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5346, 48, 52, 30fvmptf 7037 . . . . . 6 ((𝑋𝑆 ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℝ) → (𝐺𝑋) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5433, 45, 53syl2anc 584 . . . . 5 (𝜑 → (𝐺𝑋) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5532, 54oveq12d 7449 . . . 4 (𝜑 → ((𝐺𝑌) − (𝐺𝑋)) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
5655fveq2d 6911 . . 3 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) = (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
5721recnd 11287 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
5845recnd 11287 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℂ)
5957, 58abssubd 15489 . . 3 (𝜑 → (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))) = (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
6056, 59eqtrd 2775 . 2 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) = (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
61 dvfsum2.s . . . . . . . . . 10 𝑆 = (𝑇(,)+∞)
62 ioossre 13445 . . . . . . . . . 10 (𝑇(,)+∞) ⊆ ℝ
6361, 62eqsstri 4030 . . . . . . . . 9 𝑆 ⊆ ℝ
6463a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℝ)
65 dvfsum2.b1 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵𝑉)
66 dvfsum2.b3 . . . . . . . 8 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
6764, 13, 65, 66dvmptrecl 26079 . . . . . . 7 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
6867ralrimiva 3144 . . . . . 6 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
69 dvfsum2.e . . . . . . . 8 (𝑥 = 𝑌𝐵 = 𝐸)
7069eleq1d 2824 . . . . . . 7 (𝑥 = 𝑌 → (𝐵 ∈ ℝ ↔ 𝐸 ∈ ℝ))
7170rspcv 3618 . . . . . 6 (𝑌𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝐸 ∈ ℝ))
721, 68, 71sylc 65 . . . . 5 (𝜑𝐸 ∈ ℝ)
7321, 72resubcld 11689 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ∈ ℝ)
7463, 33sselid 3993 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
75 reflcl 13833 . . . . . . . . 9 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
7674, 75syl 17 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ∈ ℝ)
7774, 76resubcld 11689 . . . . . . 7 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℝ)
78 nfv 1912 . . . . . . . . . 10 𝑚 𝐵 ∈ ℝ
79 nfcsb1v 3933 . . . . . . . . . . 11 𝑥𝑚 / 𝑥𝐵
8079nfel1 2920 . . . . . . . . . 10 𝑥𝑚 / 𝑥𝐵 ∈ ℝ
81 csbeq1a 3922 . . . . . . . . . . 11 (𝑥 = 𝑚𝐵 = 𝑚 / 𝑥𝐵)
8281eleq1d 2824 . . . . . . . . . 10 (𝑥 = 𝑚 → (𝐵 ∈ ℝ ↔ 𝑚 / 𝑥𝐵 ∈ ℝ))
8378, 80, 82cbvralw 3304 . . . . . . . . 9 (∀𝑥𝑆 𝐵 ∈ ℝ ↔ ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
8468, 83sylib 218 . . . . . . . 8 (𝜑 → ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
85 csbeq1 3911 . . . . . . . . . 10 (𝑚 = 𝑋𝑚 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
8685eleq1d 2824 . . . . . . . . 9 (𝑚 = 𝑋 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
8786rspcv 3618 . . . . . . . 8 (𝑋𝑆 → (∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ → 𝑋 / 𝑥𝐵 ∈ ℝ))
8833, 84, 87sylc 65 . . . . . . 7 (𝜑𝑋 / 𝑥𝐵 ∈ ℝ)
8977, 88remulcld 11289 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℝ)
9089, 45readdcld 11288 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℝ)
9190, 88resubcld 11689 . . . 4 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ∈ ℝ)
9263, 1sselid 3993 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ)
93 reflcl 13833 . . . . . . . . . 10 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
9492, 93syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑌) ∈ ℝ)
9592, 94resubcld 11689 . . . . . . . 8 (𝜑 → (𝑌 − (⌊‘𝑌)) ∈ ℝ)
9695, 72remulcld 11289 . . . . . . 7 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ∈ ℝ)
9796, 21readdcld 11288 . . . . . 6 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℝ)
9897, 72resubcld 11689 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) ∈ ℝ)
99 fracge0 13841 . . . . . . . . 9 (𝑌 ∈ ℝ → 0 ≤ (𝑌 − (⌊‘𝑌)))
10092, 99syl 17 . . . . . . . 8 (𝜑 → 0 ≤ (𝑌 − (⌊‘𝑌)))
101 dvfsum2.0 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
102101expr 456 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝐷𝑥 → 0 ≤ 𝐵))
103102ralrimiva 3144 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (𝐷𝑥 → 0 ≤ 𝐵))
104 dvfsum2.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ)
105 dvfsum2.3 . . . . . . . . . 10 (𝜑𝐷𝑋)
106 dvfsum2.4 . . . . . . . . . 10 (𝜑𝑋𝑌)
107104, 74, 92, 105, 106letrd 11416 . . . . . . . . 9 (𝜑𝐷𝑌)
108 breq2 5152 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝐷𝑥𝐷𝑌))
10969breq2d 5160 . . . . . . . . . . 11 (𝑥 = 𝑌 → (0 ≤ 𝐵 ↔ 0 ≤ 𝐸))
110108, 109imbi12d 344 . . . . . . . . . 10 (𝑥 = 𝑌 → ((𝐷𝑥 → 0 ≤ 𝐵) ↔ (𝐷𝑌 → 0 ≤ 𝐸)))
111110rspcv 3618 . . . . . . . . 9 (𝑌𝑆 → (∀𝑥𝑆 (𝐷𝑥 → 0 ≤ 𝐵) → (𝐷𝑌 → 0 ≤ 𝐸)))
1121, 103, 107, 111syl3c 66 . . . . . . . 8 (𝜑 → 0 ≤ 𝐸)
11395, 72, 100, 112mulge0d 11838 . . . . . . 7 (𝜑 → 0 ≤ ((𝑌 − (⌊‘𝑌)) · 𝐸))
11421, 96addge02d 11850 . . . . . . 7 (𝜑 → (0 ≤ ((𝑌 − (⌊‘𝑌)) · 𝐸) ↔ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
115113, 114mpbid 232 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
11621, 97, 72, 115lesub1dd 11877 . . . . 5 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ ((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸))
117 dvfsum2.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
118 dvfsum2.md . . . . . . . . . . 11 (𝜑𝑀 ≤ (𝐷 + 1))
119 dvfsum2.t . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ)
12013renegcld 11688 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → -𝐴 ∈ ℝ)
12167renegcld 11688 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → -𝐵 ∈ ℝ)
1223renegcld 11688 . . . . . . . . . . 11 ((𝜑𝑥𝑍) → -𝐵 ∈ ℝ)
123 reelprrecn 11245 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
124123a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
12513recnd 11287 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝐴 ∈ ℂ)
126124, 125, 65, 66dvmptneg 26019 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥𝑆 ↦ -𝐴)) = (𝑥𝑆 ↦ -𝐵))
1278negeqd 11500 . . . . . . . . . . 11 (𝑥 = 𝑘 → -𝐵 = -𝐶)
128 dvfsum2.u . . . . . . . . . . 11 (𝜑𝑈 ∈ ℝ*)
129 dvfsum2.l . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐵𝐶)
13067adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑘𝑆)) → 𝐵 ∈ ℝ)
1311303adant3 1131 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐵 ∈ ℝ)
132 simp2r 1199 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝑘𝑆)
133683ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → ∀𝑥𝑆 𝐵 ∈ ℝ)
1349rspcv 3618 . . . . . . . . . . . . . 14 (𝑘𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝐶 ∈ ℝ))
135132, 133, 134sylc 65 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶 ∈ ℝ)
136131, 135lenegd 11840 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → (𝐵𝐶 ↔ -𝐶 ≤ -𝐵))
137129, 136mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → -𝐶 ≤ -𝐵)
138 eqid 2735 . . . . . . . . . . 11 (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴))) = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))
139 dvfsum2.5 . . . . . . . . . . 11 (𝜑𝑌𝑈)
14061, 6, 117, 104, 118, 119, 120, 121, 122, 126, 127, 128, 137, 138, 33, 1, 105, 106, 139dvfsumlem3 26084 . . . . . . . . . 10 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) ≤ ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) ∧ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) − 𝑋 / 𝑥-𝐵) ≤ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) − 𝑌 / 𝑥-𝐵)))
141140simprd 495 . . . . . . . . 9 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) − 𝑋 / 𝑥-𝐵) ≤ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) − 𝑌 / 𝑥-𝐵))
14277recnd 11287 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℂ)
14388recnd 11287 . . . . . . . . . . . . . . . 16 (𝜑𝑋 / 𝑥𝐵 ∈ ℂ)
144142, 143mulneg2d 11715 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) = -((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
14538recnd 11287 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℂ)
14644recnd 11287 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 / 𝑥𝐴 ∈ ℂ)
147145, 146neg2subd 11635 . . . . . . . . . . . . . . . 16 (𝜑 → (-Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 − -𝑋 / 𝑥𝐴) = (𝑋 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
14837recnd 11287 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℂ)
14934, 148fsumneg 15820 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 = -Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
150149oveq1d 7446 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴) = (-Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 − -𝑋 / 𝑥𝐴))
151145, 146negsubdi2d 11634 . . . . . . . . . . . . . . . 16 (𝜑 → -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) = (𝑋 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
152147, 150, 1513eqtr4d 2785 . . . . . . . . . . . . . . 15 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴) = -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
153144, 152oveq12d 7449 . . . . . . . . . . . . . 14 (𝜑 → (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) = (-((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
15489recnd 11287 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℂ)
155154, 58negdid 11631 . . . . . . . . . . . . . 14 (𝜑 → -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) = (-((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
156153, 155eqtr4d 2778 . . . . . . . . . . . . 13 (𝜑 → (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) = -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
15790renegcld 11688 . . . . . . . . . . . . 13 (𝜑 → -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℝ)
158156, 157eqeltrd 2839 . . . . . . . . . . . 12 (𝜑 → (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) ∈ ℝ)
159 nfcv 2903 . . . . . . . . . . . . . . 15 𝑥(𝑋 − (⌊‘𝑋))
160 nfcv 2903 . . . . . . . . . . . . . . 15 𝑥 ·
161 nfcsb1v 3933 . . . . . . . . . . . . . . . 16 𝑥𝑋 / 𝑥𝐵
162161nfneg 11502 . . . . . . . . . . . . . . 15 𝑥-𝑋 / 𝑥𝐵
163159, 160, 162nfov 7461 . . . . . . . . . . . . . 14 𝑥((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵)
164 nfcv 2903 . . . . . . . . . . . . . 14 𝑥 +
165 nfcv 2903 . . . . . . . . . . . . . . 15 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶
16639nfneg 11502 . . . . . . . . . . . . . . 15 𝑥-𝑋 / 𝑥𝐴
167165, 24, 166nfov 7461 . . . . . . . . . . . . . 14 𝑥𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)
168163, 164, 167nfov 7461 . . . . . . . . . . . . 13 𝑥(((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴))
169 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋𝑥 = 𝑋)
170169, 49oveq12d 7449 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (𝑥 − (⌊‘𝑥)) = (𝑋 − (⌊‘𝑋)))
171 csbeq1a 3922 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋𝐵 = 𝑋 / 𝑥𝐵)
172171negeqd 11500 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → -𝐵 = -𝑋 / 𝑥𝐵)
173170, 172oveq12d 7449 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝑥 − (⌊‘𝑥)) · -𝐵) = ((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵))
17450sumeq1d 15733 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶)
17541negeqd 11500 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → -𝐴 = -𝑋 / 𝑥𝐴)
176174, 175oveq12d 7449 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴))
177173, 176oveq12d 7449 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)) = (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)))
17846, 168, 177, 138fvmptf 7037 . . . . . . . . . . . 12 ((𝑋𝑆 ∧ (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) ∈ ℝ) → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) = (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)))
17933, 158, 178syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) = (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)))
180179, 156eqtrd 2775 . . . . . . . . . 10 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) = -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
181 csbnegg 11503 . . . . . . . . . . 11 (𝑋𝑆𝑋 / 𝑥-𝐵 = -𝑋 / 𝑥𝐵)
18233, 181syl 17 . . . . . . . . . 10 (𝜑𝑋 / 𝑥-𝐵 = -𝑋 / 𝑥𝐵)
183180, 182oveq12d 7449 . . . . . . . . 9 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) − 𝑋 / 𝑥-𝐵) = (-(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − -𝑋 / 𝑥𝐵))
18495recnd 11287 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 − (⌊‘𝑌)) ∈ ℂ)
18572recnd 11287 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ ℂ)
186184, 185mulneg2d 11715 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑌 − (⌊‘𝑌)) · -𝐸) = -((𝑌 − (⌊‘𝑌)) · 𝐸))
18712recnd 11287 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 ∈ ℂ)
18820recnd 11287 . . . . . . . . . . . . . . . . 17 (𝜑𝑌 / 𝑥𝐴 ∈ ℂ)
189187, 188neg2subd 11635 . . . . . . . . . . . . . . . 16 (𝜑 → (-Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 − -𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶))
19011recnd 11287 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑌))) → 𝐶 ∈ ℂ)
1912, 190fsumneg 15820 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 = -Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶)
192191oveq1d 7446 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴) = (-Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 − -𝑌 / 𝑥𝐴))
193187, 188negsubdi2d 11634 . . . . . . . . . . . . . . . 16 (𝜑 → -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶))
194189, 192, 1933eqtr4d 2785 . . . . . . . . . . . . . . 15 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴) = -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
195186, 194oveq12d 7449 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) = (-((𝑌 − (⌊‘𝑌)) · 𝐸) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
19696recnd 11287 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ∈ ℂ)
197196, 57negdid 11631 . . . . . . . . . . . . . 14 (𝜑 → -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (-((𝑌 − (⌊‘𝑌)) · 𝐸) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
198195, 197eqtr4d 2778 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) = -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
19997renegcld 11688 . . . . . . . . . . . . 13 (𝜑 → -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℝ)
200198, 199eqeltrd 2839 . . . . . . . . . . . 12 (𝜑 → (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) ∈ ℝ)
201 nfcv 2903 . . . . . . . . . . . . . 14 𝑥((𝑌 − (⌊‘𝑌)) · -𝐸)
202 nfcv 2903 . . . . . . . . . . . . . . 15 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶
20315nfneg 11502 . . . . . . . . . . . . . . 15 𝑥-𝑌 / 𝑥𝐴
204202, 24, 203nfov 7461 . . . . . . . . . . . . . 14 𝑥𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)
205201, 164, 204nfov 7461 . . . . . . . . . . . . 13 𝑥(((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴))
206 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌𝑥 = 𝑌)
207206, 26oveq12d 7449 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → (𝑥 − (⌊‘𝑥)) = (𝑌 − (⌊‘𝑌)))
20869negeqd 11500 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → -𝐵 = -𝐸)
209207, 208oveq12d 7449 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → ((𝑥 − (⌊‘𝑥)) · -𝐵) = ((𝑌 − (⌊‘𝑌)) · -𝐸))
21027sumeq1d 15733 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶)
21117negeqd 11500 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → -𝐴 = -𝑌 / 𝑥𝐴)
212210, 211oveq12d 7449 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴))
213209, 212oveq12d 7449 . . . . . . . . . . . . 13 (𝑥 = 𝑌 → (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)) = (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)))
21422, 205, 213, 138fvmptf 7037 . . . . . . . . . . . 12 ((𝑌𝑆 ∧ (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) ∈ ℝ) → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) = (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)))
2151, 200, 214syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) = (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)))
216215, 198eqtrd 2775 . . . . . . . . . 10 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) = -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
217208adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 = 𝑌) → -𝐵 = -𝐸)
2181, 217csbied 3946 . . . . . . . . . 10 (𝜑𝑌 / 𝑥-𝐵 = -𝐸)
219216, 218oveq12d 7449 . . . . . . . . 9 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) − 𝑌 / 𝑥-𝐵) = (-(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − -𝐸))
220141, 183, 2193brtr3d 5179 . . . . . . . 8 (𝜑 → (-(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − -𝑋 / 𝑥𝐵) ≤ (-(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − -𝐸))
22190recnd 11287 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℂ)
222221, 143neg2subd 11635 . . . . . . . 8 (𝜑 → (-(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − -𝑋 / 𝑥𝐵) = (𝑋 / 𝑥𝐵 − (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
22397recnd 11287 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℂ)
224223, 185neg2subd 11635 . . . . . . . 8 (𝜑 → (-(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − -𝐸) = (𝐸 − (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
225220, 222, 2243brtr3d 5179 . . . . . . 7 (𝜑 → (𝑋 / 𝑥𝐵 − (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))) ≤ (𝐸 − (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
226221, 143negsubdi2d 11634 . . . . . . 7 (𝜑 → -((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) = (𝑋 / 𝑥𝐵 − (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
227223, 185negsubdi2d 11634 . . . . . . 7 (𝜑 → -((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) = (𝐸 − (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
228225, 226, 2273brtr4d 5180 . . . . . 6 (𝜑 → -((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ -((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸))
22998, 91lenegd 11840 . . . . . 6 (𝜑 → (((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ↔ -((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ -((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸)))
230228, 229mpbird 257 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵))
23173, 98, 91, 116, 230letrd 11416 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵))
232 1red 11260 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
233 nfv 1912 . . . . . . . . . . 11 𝑥 𝐷𝑋
234 nfcv 2903 . . . . . . . . . . . 12 𝑥0
235 nfcv 2903 . . . . . . . . . . . 12 𝑥
236234, 235, 161nfbr 5195 . . . . . . . . . . 11 𝑥0 ≤ 𝑋 / 𝑥𝐵
237233, 236nfim 1894 . . . . . . . . . 10 𝑥(𝐷𝑋 → 0 ≤ 𝑋 / 𝑥𝐵)
238 breq2 5152 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐷𝑥𝐷𝑋))
239171breq2d 5160 . . . . . . . . . . 11 (𝑥 = 𝑋 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑋 / 𝑥𝐵))
240238, 239imbi12d 344 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐷𝑥 → 0 ≤ 𝐵) ↔ (𝐷𝑋 → 0 ≤ 𝑋 / 𝑥𝐵)))
241237, 240rspc 3610 . . . . . . . . 9 (𝑋𝑆 → (∀𝑥𝑆 (𝐷𝑥 → 0 ≤ 𝐵) → (𝐷𝑋 → 0 ≤ 𝑋 / 𝑥𝐵)))
24233, 103, 105, 241syl3c 66 . . . . . . . 8 (𝜑 → 0 ≤ 𝑋 / 𝑥𝐵)
243 fracle1 13840 . . . . . . . . 9 (𝑋 ∈ ℝ → (𝑋 − (⌊‘𝑋)) ≤ 1)
24474, 243syl 17 . . . . . . . 8 (𝜑 → (𝑋 − (⌊‘𝑋)) ≤ 1)
24577, 232, 88, 242, 244lemul1ad 12205 . . . . . . 7 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ≤ (1 · 𝑋 / 𝑥𝐵))
246143mullidd 11277 . . . . . . 7 (𝜑 → (1 · 𝑋 / 𝑥𝐵) = 𝑋 / 𝑥𝐵)
247245, 246breqtrd 5174 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ≤ 𝑋 / 𝑥𝐵)
24889, 88, 45, 247leadd1dd 11875 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
24990, 88, 45lesubadd2d 11860 . . . . 5 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ↔ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
250248, 249mpbird 257 . . . 4 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
25173, 91, 45, 231, 250letrd 11416 . . 3 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
25221, 72readdcld 11288 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸) ∈ ℝ)
253 fracge0 13841 . . . . . . 7 (𝑋 ∈ ℝ → 0 ≤ (𝑋 − (⌊‘𝑋)))
25474, 253syl 17 . . . . . 6 (𝜑 → 0 ≤ (𝑋 − (⌊‘𝑋)))
25577, 88, 254, 242mulge0d 11838 . . . . 5 (𝜑 → 0 ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
25645, 89addge02d 11850 . . . . 5 (𝜑 → (0 ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ↔ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
257255, 256mpbid 232 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
258140simpld 494 . . . . . . 7 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) ≤ ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋))
259258, 216, 1803brtr3d 5179 . . . . . 6 (𝜑 → -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
26090, 97lenegd 11840 . . . . . 6 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ↔ -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
261259, 260mpbird 257 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
262 fracle1 13840 . . . . . . . . . 10 (𝑌 ∈ ℝ → (𝑌 − (⌊‘𝑌)) ≤ 1)
26392, 262syl 17 . . . . . . . . 9 (𝜑 → (𝑌 − (⌊‘𝑌)) ≤ 1)
26495, 232, 72, 112, 263lemul1ad 12205 . . . . . . . 8 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ≤ (1 · 𝐸))
265185mullidd 11277 . . . . . . . 8 (𝜑 → (1 · 𝐸) = 𝐸)
266264, 265breqtrd 5174 . . . . . . 7 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ≤ 𝐸)
26796, 72, 21, 266leadd1dd 11875 . . . . . 6 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ (𝐸 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
268185, 57addcomd 11461 . . . . . 6 (𝜑 → (𝐸 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
269267, 268breqtrd 5174 . . . . 5 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
27090, 97, 252, 261, 269letrd 11416 . . . 4 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
27145, 90, 252, 257, 270letrd 11416 . . 3 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
27245, 21, 72absdifled 15470 . . 3 (𝜑 → ((abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))) ≤ 𝐸 ↔ (((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))))
273251, 271, 272mpbir2and 713 . 2 (𝜑 → (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))) ≤ 𝐸)
27460, 273eqbrtrd 5170 1 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) ≤ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  csb 3908  wss 3963  {cpr 4633   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  +∞cpnf 11290  *cxr 11292  cle 11294  cmin 11490  -cneg 11491  cz 12611  cuz 12876  (,)cioo 13384  ...cfz 13544  cfl 13827  abscabs 15270  Σcsu 15719   D cdv 25913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by:  logfacbnd3  27282  log2sumbnd  27603
  Copyright terms: Public domain W3C validator