MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsum2 Structured version   Visualization version   GIF version

Theorem dvfsum2 25941
Description: The reverse of dvfsumrlim 25938, when comparing a finite sum of increasing terms to an integral. In this case there is no point in stating the limit properties, because the terms of the sum aren't approaching zero, but there is nevertheless still a natural asymptotic statement that can be made. (Contributed by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
dvfsum2.s 𝑆 = (𝑇(,)+∞)
dvfsum2.z 𝑍 = (ℤ𝑀)
dvfsum2.m (𝜑𝑀 ∈ ℤ)
dvfsum2.d (𝜑𝐷 ∈ ℝ)
dvfsum2.u (𝜑𝑈 ∈ ℝ*)
dvfsum2.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum2.t (𝜑𝑇 ∈ ℝ)
dvfsum2.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum2.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum2.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum2.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum2.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum2.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐵𝐶)
dvfsum2.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsum2.0 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
dvfsum2.1 (𝜑𝑋𝑆)
dvfsum2.2 (𝜑𝑌𝑆)
dvfsum2.3 (𝜑𝐷𝑋)
dvfsum2.4 (𝜑𝑋𝑌)
dvfsum2.5 (𝜑𝑌𝑈)
dvfsum2.e (𝑥 = 𝑌𝐵 = 𝐸)
Assertion
Ref Expression
dvfsum2 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) ≤ 𝐸)
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑥,𝐸   𝑘,𝑀,𝑥   𝑆,𝑘,𝑥   𝑘,𝑋,𝑥   𝑘,𝑌,𝑥   𝑥,𝑇   𝑈,𝑘,𝑥   𝑥,𝑉   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐸(𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑘)   𝑍(𝑘)

Proof of Theorem dvfsum2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvfsum2.2 . . . . . 6 (𝜑𝑌𝑆)
2 fzfid 13938 . . . . . . . 8 (𝜑 → (𝑀...(⌊‘𝑌)) ∈ Fin)
3 dvfsum2.b2 . . . . . . . . . 10 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
43ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℝ)
5 elfzuz 13481 . . . . . . . . . 10 (𝑘 ∈ (𝑀...(⌊‘𝑌)) → 𝑘 ∈ (ℤ𝑀))
6 dvfsum2.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
75, 6eleqtrrdi 2839 . . . . . . . . 9 (𝑘 ∈ (𝑀...(⌊‘𝑌)) → 𝑘𝑍)
8 dvfsum2.c . . . . . . . . . . 11 (𝑥 = 𝑘𝐵 = 𝐶)
98eleq1d 2813 . . . . . . . . . 10 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
109rspccva 3587 . . . . . . . . 9 ((∀𝑥𝑍 𝐵 ∈ ℝ ∧ 𝑘𝑍) → 𝐶 ∈ ℝ)
114, 7, 10syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑌))) → 𝐶 ∈ ℝ)
122, 11fsumrecl 15700 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 ∈ ℝ)
13 dvfsum2.a . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
1413ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
15 nfcsb1v 3886 . . . . . . . . . 10 𝑥𝑌 / 𝑥𝐴
1615nfel1 2908 . . . . . . . . 9 𝑥𝑌 / 𝑥𝐴 ∈ ℝ
17 csbeq1a 3876 . . . . . . . . . 10 (𝑥 = 𝑌𝐴 = 𝑌 / 𝑥𝐴)
1817eleq1d 2813 . . . . . . . . 9 (𝑥 = 𝑌 → (𝐴 ∈ ℝ ↔ 𝑌 / 𝑥𝐴 ∈ ℝ))
1916, 18rspc 3576 . . . . . . . 8 (𝑌𝑆 → (∀𝑥𝑆 𝐴 ∈ ℝ → 𝑌 / 𝑥𝐴 ∈ ℝ))
201, 14, 19sylc 65 . . . . . . 7 (𝜑𝑌 / 𝑥𝐴 ∈ ℝ)
2112, 20resubcld 11606 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℝ)
22 nfcv 2891 . . . . . . 7 𝑥𝑌
23 nfcv 2891 . . . . . . . 8 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶
24 nfcv 2891 . . . . . . . 8 𝑥
2523, 24, 15nfov 7417 . . . . . . 7 𝑥𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)
26 fveq2 6858 . . . . . . . . . 10 (𝑥 = 𝑌 → (⌊‘𝑥) = (⌊‘𝑌))
2726oveq2d 7403 . . . . . . . . 9 (𝑥 = 𝑌 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑌)))
2827sumeq1d 15666 . . . . . . . 8 (𝑥 = 𝑌 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶)
2928, 17oveq12d 7405 . . . . . . 7 (𝑥 = 𝑌 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
30 dvfsum2.g . . . . . . 7 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
3122, 25, 29, 30fvmptf 6989 . . . . . 6 ((𝑌𝑆 ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℝ) → (𝐺𝑌) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
321, 21, 31syl2anc 584 . . . . 5 (𝜑 → (𝐺𝑌) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
33 dvfsum2.1 . . . . . 6 (𝜑𝑋𝑆)
34 fzfid 13938 . . . . . . . 8 (𝜑 → (𝑀...(⌊‘𝑋)) ∈ Fin)
35 elfzuz 13481 . . . . . . . . . 10 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘 ∈ (ℤ𝑀))
3635, 6eleqtrrdi 2839 . . . . . . . . 9 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘𝑍)
374, 36, 10syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℝ)
3834, 37fsumrecl 15700 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℝ)
39 nfcsb1v 3886 . . . . . . . . . 10 𝑥𝑋 / 𝑥𝐴
4039nfel1 2908 . . . . . . . . 9 𝑥𝑋 / 𝑥𝐴 ∈ ℝ
41 csbeq1a 3876 . . . . . . . . . 10 (𝑥 = 𝑋𝐴 = 𝑋 / 𝑥𝐴)
4241eleq1d 2813 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐴 ∈ ℝ ↔ 𝑋 / 𝑥𝐴 ∈ ℝ))
4340, 42rspc 3576 . . . . . . . 8 (𝑋𝑆 → (∀𝑥𝑆 𝐴 ∈ ℝ → 𝑋 / 𝑥𝐴 ∈ ℝ))
4433, 14, 43sylc 65 . . . . . . 7 (𝜑𝑋 / 𝑥𝐴 ∈ ℝ)
4538, 44resubcld 11606 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℝ)
46 nfcv 2891 . . . . . . 7 𝑥𝑋
47 nfcv 2891 . . . . . . . 8 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶
4847, 24, 39nfov 7417 . . . . . . 7 𝑥𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)
49 fveq2 6858 . . . . . . . . . 10 (𝑥 = 𝑋 → (⌊‘𝑥) = (⌊‘𝑋))
5049oveq2d 7403 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑋)))
5150sumeq1d 15666 . . . . . . . 8 (𝑥 = 𝑋 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
5251, 41oveq12d 7405 . . . . . . 7 (𝑥 = 𝑋 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5346, 48, 52, 30fvmptf 6989 . . . . . 6 ((𝑋𝑆 ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℝ) → (𝐺𝑋) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5433, 45, 53syl2anc 584 . . . . 5 (𝜑 → (𝐺𝑋) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5532, 54oveq12d 7405 . . . 4 (𝜑 → ((𝐺𝑌) − (𝐺𝑋)) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
5655fveq2d 6862 . . 3 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) = (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
5721recnd 11202 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
5845recnd 11202 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℂ)
5957, 58abssubd 15422 . . 3 (𝜑 → (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))) = (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
6056, 59eqtrd 2764 . 2 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) = (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
61 dvfsum2.s . . . . . . . . . 10 𝑆 = (𝑇(,)+∞)
62 ioossre 13368 . . . . . . . . . 10 (𝑇(,)+∞) ⊆ ℝ
6361, 62eqsstri 3993 . . . . . . . . 9 𝑆 ⊆ ℝ
6463a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℝ)
65 dvfsum2.b1 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵𝑉)
66 dvfsum2.b3 . . . . . . . 8 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
6764, 13, 65, 66dvmptrecl 25930 . . . . . . 7 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
6867ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
69 dvfsum2.e . . . . . . . 8 (𝑥 = 𝑌𝐵 = 𝐸)
7069eleq1d 2813 . . . . . . 7 (𝑥 = 𝑌 → (𝐵 ∈ ℝ ↔ 𝐸 ∈ ℝ))
7170rspcv 3584 . . . . . 6 (𝑌𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝐸 ∈ ℝ))
721, 68, 71sylc 65 . . . . 5 (𝜑𝐸 ∈ ℝ)
7321, 72resubcld 11606 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ∈ ℝ)
7463, 33sselid 3944 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
75 reflcl 13758 . . . . . . . . 9 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
7674, 75syl 17 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ∈ ℝ)
7774, 76resubcld 11606 . . . . . . 7 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℝ)
78 nfv 1914 . . . . . . . . . 10 𝑚 𝐵 ∈ ℝ
79 nfcsb1v 3886 . . . . . . . . . . 11 𝑥𝑚 / 𝑥𝐵
8079nfel1 2908 . . . . . . . . . 10 𝑥𝑚 / 𝑥𝐵 ∈ ℝ
81 csbeq1a 3876 . . . . . . . . . . 11 (𝑥 = 𝑚𝐵 = 𝑚 / 𝑥𝐵)
8281eleq1d 2813 . . . . . . . . . 10 (𝑥 = 𝑚 → (𝐵 ∈ ℝ ↔ 𝑚 / 𝑥𝐵 ∈ ℝ))
8378, 80, 82cbvralw 3280 . . . . . . . . 9 (∀𝑥𝑆 𝐵 ∈ ℝ ↔ ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
8468, 83sylib 218 . . . . . . . 8 (𝜑 → ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
85 csbeq1 3865 . . . . . . . . . 10 (𝑚 = 𝑋𝑚 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
8685eleq1d 2813 . . . . . . . . 9 (𝑚 = 𝑋 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
8786rspcv 3584 . . . . . . . 8 (𝑋𝑆 → (∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ → 𝑋 / 𝑥𝐵 ∈ ℝ))
8833, 84, 87sylc 65 . . . . . . 7 (𝜑𝑋 / 𝑥𝐵 ∈ ℝ)
8977, 88remulcld 11204 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℝ)
9089, 45readdcld 11203 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℝ)
9190, 88resubcld 11606 . . . 4 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ∈ ℝ)
9263, 1sselid 3944 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ)
93 reflcl 13758 . . . . . . . . . 10 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
9492, 93syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑌) ∈ ℝ)
9592, 94resubcld 11606 . . . . . . . 8 (𝜑 → (𝑌 − (⌊‘𝑌)) ∈ ℝ)
9695, 72remulcld 11204 . . . . . . 7 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ∈ ℝ)
9796, 21readdcld 11203 . . . . . 6 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℝ)
9897, 72resubcld 11606 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) ∈ ℝ)
99 fracge0 13766 . . . . . . . . 9 (𝑌 ∈ ℝ → 0 ≤ (𝑌 − (⌊‘𝑌)))
10092, 99syl 17 . . . . . . . 8 (𝜑 → 0 ≤ (𝑌 − (⌊‘𝑌)))
101 dvfsum2.0 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
102101expr 456 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝐷𝑥 → 0 ≤ 𝐵))
103102ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (𝐷𝑥 → 0 ≤ 𝐵))
104 dvfsum2.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ)
105 dvfsum2.3 . . . . . . . . . 10 (𝜑𝐷𝑋)
106 dvfsum2.4 . . . . . . . . . 10 (𝜑𝑋𝑌)
107104, 74, 92, 105, 106letrd 11331 . . . . . . . . 9 (𝜑𝐷𝑌)
108 breq2 5111 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝐷𝑥𝐷𝑌))
10969breq2d 5119 . . . . . . . . . . 11 (𝑥 = 𝑌 → (0 ≤ 𝐵 ↔ 0 ≤ 𝐸))
110108, 109imbi12d 344 . . . . . . . . . 10 (𝑥 = 𝑌 → ((𝐷𝑥 → 0 ≤ 𝐵) ↔ (𝐷𝑌 → 0 ≤ 𝐸)))
111110rspcv 3584 . . . . . . . . 9 (𝑌𝑆 → (∀𝑥𝑆 (𝐷𝑥 → 0 ≤ 𝐵) → (𝐷𝑌 → 0 ≤ 𝐸)))
1121, 103, 107, 111syl3c 66 . . . . . . . 8 (𝜑 → 0 ≤ 𝐸)
11395, 72, 100, 112mulge0d 11755 . . . . . . 7 (𝜑 → 0 ≤ ((𝑌 − (⌊‘𝑌)) · 𝐸))
11421, 96addge02d 11767 . . . . . . 7 (𝜑 → (0 ≤ ((𝑌 − (⌊‘𝑌)) · 𝐸) ↔ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
115113, 114mpbid 232 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
11621, 97, 72, 115lesub1dd 11794 . . . . 5 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ ((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸))
117 dvfsum2.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
118 dvfsum2.md . . . . . . . . . . 11 (𝜑𝑀 ≤ (𝐷 + 1))
119 dvfsum2.t . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ)
12013renegcld 11605 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → -𝐴 ∈ ℝ)
12167renegcld 11605 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → -𝐵 ∈ ℝ)
1223renegcld 11605 . . . . . . . . . . 11 ((𝜑𝑥𝑍) → -𝐵 ∈ ℝ)
123 reelprrecn 11160 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
124123a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
12513recnd 11202 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝐴 ∈ ℂ)
126124, 125, 65, 66dvmptneg 25870 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥𝑆 ↦ -𝐴)) = (𝑥𝑆 ↦ -𝐵))
1278negeqd 11415 . . . . . . . . . . 11 (𝑥 = 𝑘 → -𝐵 = -𝐶)
128 dvfsum2.u . . . . . . . . . . 11 (𝜑𝑈 ∈ ℝ*)
129 dvfsum2.l . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐵𝐶)
13067adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑘𝑆)) → 𝐵 ∈ ℝ)
1311303adant3 1132 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐵 ∈ ℝ)
132 simp2r 1201 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝑘𝑆)
133683ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → ∀𝑥𝑆 𝐵 ∈ ℝ)
1349rspcv 3584 . . . . . . . . . . . . . 14 (𝑘𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝐶 ∈ ℝ))
135132, 133, 134sylc 65 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶 ∈ ℝ)
136131, 135lenegd 11757 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → (𝐵𝐶 ↔ -𝐶 ≤ -𝐵))
137129, 136mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → -𝐶 ≤ -𝐵)
138 eqid 2729 . . . . . . . . . . 11 (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴))) = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))
139 dvfsum2.5 . . . . . . . . . . 11 (𝜑𝑌𝑈)
14061, 6, 117, 104, 118, 119, 120, 121, 122, 126, 127, 128, 137, 138, 33, 1, 105, 106, 139dvfsumlem3 25935 . . . . . . . . . 10 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) ≤ ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) ∧ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) − 𝑋 / 𝑥-𝐵) ≤ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) − 𝑌 / 𝑥-𝐵)))
141140simprd 495 . . . . . . . . 9 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) − 𝑋 / 𝑥-𝐵) ≤ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) − 𝑌 / 𝑥-𝐵))
14277recnd 11202 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℂ)
14388recnd 11202 . . . . . . . . . . . . . . . 16 (𝜑𝑋 / 𝑥𝐵 ∈ ℂ)
144142, 143mulneg2d 11632 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) = -((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
14538recnd 11202 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℂ)
14644recnd 11202 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 / 𝑥𝐴 ∈ ℂ)
147145, 146neg2subd 11550 . . . . . . . . . . . . . . . 16 (𝜑 → (-Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 − -𝑋 / 𝑥𝐴) = (𝑋 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
14837recnd 11202 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℂ)
14934, 148fsumneg 15753 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 = -Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
150149oveq1d 7402 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴) = (-Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 − -𝑋 / 𝑥𝐴))
151145, 146negsubdi2d 11549 . . . . . . . . . . . . . . . 16 (𝜑 → -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) = (𝑋 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
152147, 150, 1513eqtr4d 2774 . . . . . . . . . . . . . . 15 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴) = -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
153144, 152oveq12d 7405 . . . . . . . . . . . . . 14 (𝜑 → (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) = (-((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
15489recnd 11202 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℂ)
155154, 58negdid 11546 . . . . . . . . . . . . . 14 (𝜑 → -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) = (-((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
156153, 155eqtr4d 2767 . . . . . . . . . . . . 13 (𝜑 → (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) = -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
15790renegcld 11605 . . . . . . . . . . . . 13 (𝜑 → -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℝ)
158156, 157eqeltrd 2828 . . . . . . . . . . . 12 (𝜑 → (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) ∈ ℝ)
159 nfcv 2891 . . . . . . . . . . . . . . 15 𝑥(𝑋 − (⌊‘𝑋))
160 nfcv 2891 . . . . . . . . . . . . . . 15 𝑥 ·
161 nfcsb1v 3886 . . . . . . . . . . . . . . . 16 𝑥𝑋 / 𝑥𝐵
162161nfneg 11417 . . . . . . . . . . . . . . 15 𝑥-𝑋 / 𝑥𝐵
163159, 160, 162nfov 7417 . . . . . . . . . . . . . 14 𝑥((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵)
164 nfcv 2891 . . . . . . . . . . . . . 14 𝑥 +
165 nfcv 2891 . . . . . . . . . . . . . . 15 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶
16639nfneg 11417 . . . . . . . . . . . . . . 15 𝑥-𝑋 / 𝑥𝐴
167165, 24, 166nfov 7417 . . . . . . . . . . . . . 14 𝑥𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)
168163, 164, 167nfov 7417 . . . . . . . . . . . . 13 𝑥(((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴))
169 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋𝑥 = 𝑋)
170169, 49oveq12d 7405 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (𝑥 − (⌊‘𝑥)) = (𝑋 − (⌊‘𝑋)))
171 csbeq1a 3876 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋𝐵 = 𝑋 / 𝑥𝐵)
172171negeqd 11415 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → -𝐵 = -𝑋 / 𝑥𝐵)
173170, 172oveq12d 7405 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝑥 − (⌊‘𝑥)) · -𝐵) = ((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵))
17450sumeq1d 15666 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶)
17541negeqd 11415 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → -𝐴 = -𝑋 / 𝑥𝐴)
176174, 175oveq12d 7405 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴))
177173, 176oveq12d 7405 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)) = (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)))
17846, 168, 177, 138fvmptf 6989 . . . . . . . . . . . 12 ((𝑋𝑆 ∧ (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) ∈ ℝ) → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) = (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)))
17933, 158, 178syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) = (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)))
180179, 156eqtrd 2764 . . . . . . . . . 10 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) = -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
181 csbnegg 11418 . . . . . . . . . . 11 (𝑋𝑆𝑋 / 𝑥-𝐵 = -𝑋 / 𝑥𝐵)
18233, 181syl 17 . . . . . . . . . 10 (𝜑𝑋 / 𝑥-𝐵 = -𝑋 / 𝑥𝐵)
183180, 182oveq12d 7405 . . . . . . . . 9 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) − 𝑋 / 𝑥-𝐵) = (-(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − -𝑋 / 𝑥𝐵))
18495recnd 11202 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 − (⌊‘𝑌)) ∈ ℂ)
18572recnd 11202 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ ℂ)
186184, 185mulneg2d 11632 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑌 − (⌊‘𝑌)) · -𝐸) = -((𝑌 − (⌊‘𝑌)) · 𝐸))
18712recnd 11202 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 ∈ ℂ)
18820recnd 11202 . . . . . . . . . . . . . . . . 17 (𝜑𝑌 / 𝑥𝐴 ∈ ℂ)
189187, 188neg2subd 11550 . . . . . . . . . . . . . . . 16 (𝜑 → (-Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 − -𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶))
19011recnd 11202 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑌))) → 𝐶 ∈ ℂ)
1912, 190fsumneg 15753 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 = -Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶)
192191oveq1d 7402 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴) = (-Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 − -𝑌 / 𝑥𝐴))
193187, 188negsubdi2d 11549 . . . . . . . . . . . . . . . 16 (𝜑 → -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶))
194189, 192, 1933eqtr4d 2774 . . . . . . . . . . . . . . 15 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴) = -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
195186, 194oveq12d 7405 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) = (-((𝑌 − (⌊‘𝑌)) · 𝐸) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
19696recnd 11202 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ∈ ℂ)
197196, 57negdid 11546 . . . . . . . . . . . . . 14 (𝜑 → -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (-((𝑌 − (⌊‘𝑌)) · 𝐸) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
198195, 197eqtr4d 2767 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) = -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
19997renegcld 11605 . . . . . . . . . . . . 13 (𝜑 → -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℝ)
200198, 199eqeltrd 2828 . . . . . . . . . . . 12 (𝜑 → (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) ∈ ℝ)
201 nfcv 2891 . . . . . . . . . . . . . 14 𝑥((𝑌 − (⌊‘𝑌)) · -𝐸)
202 nfcv 2891 . . . . . . . . . . . . . . 15 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶
20315nfneg 11417 . . . . . . . . . . . . . . 15 𝑥-𝑌 / 𝑥𝐴
204202, 24, 203nfov 7417 . . . . . . . . . . . . . 14 𝑥𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)
205201, 164, 204nfov 7417 . . . . . . . . . . . . 13 𝑥(((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴))
206 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌𝑥 = 𝑌)
207206, 26oveq12d 7405 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → (𝑥 − (⌊‘𝑥)) = (𝑌 − (⌊‘𝑌)))
20869negeqd 11415 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → -𝐵 = -𝐸)
209207, 208oveq12d 7405 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → ((𝑥 − (⌊‘𝑥)) · -𝐵) = ((𝑌 − (⌊‘𝑌)) · -𝐸))
21027sumeq1d 15666 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶)
21117negeqd 11415 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → -𝐴 = -𝑌 / 𝑥𝐴)
212210, 211oveq12d 7405 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴))
213209, 212oveq12d 7405 . . . . . . . . . . . . 13 (𝑥 = 𝑌 → (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)) = (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)))
21422, 205, 213, 138fvmptf 6989 . . . . . . . . . . . 12 ((𝑌𝑆 ∧ (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) ∈ ℝ) → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) = (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)))
2151, 200, 214syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) = (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)))
216215, 198eqtrd 2764 . . . . . . . . . 10 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) = -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
217208adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 = 𝑌) → -𝐵 = -𝐸)
2181, 217csbied 3898 . . . . . . . . . 10 (𝜑𝑌 / 𝑥-𝐵 = -𝐸)
219216, 218oveq12d 7405 . . . . . . . . 9 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) − 𝑌 / 𝑥-𝐵) = (-(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − -𝐸))
220141, 183, 2193brtr3d 5138 . . . . . . . 8 (𝜑 → (-(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − -𝑋 / 𝑥𝐵) ≤ (-(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − -𝐸))
22190recnd 11202 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℂ)
222221, 143neg2subd 11550 . . . . . . . 8 (𝜑 → (-(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − -𝑋 / 𝑥𝐵) = (𝑋 / 𝑥𝐵 − (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
22397recnd 11202 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℂ)
224223, 185neg2subd 11550 . . . . . . . 8 (𝜑 → (-(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − -𝐸) = (𝐸 − (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
225220, 222, 2243brtr3d 5138 . . . . . . 7 (𝜑 → (𝑋 / 𝑥𝐵 − (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))) ≤ (𝐸 − (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
226221, 143negsubdi2d 11549 . . . . . . 7 (𝜑 → -((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) = (𝑋 / 𝑥𝐵 − (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
227223, 185negsubdi2d 11549 . . . . . . 7 (𝜑 → -((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) = (𝐸 − (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
228225, 226, 2273brtr4d 5139 . . . . . 6 (𝜑 → -((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ -((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸))
22998, 91lenegd 11757 . . . . . 6 (𝜑 → (((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ↔ -((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ -((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸)))
230228, 229mpbird 257 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵))
23173, 98, 91, 116, 230letrd 11331 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵))
232 1red 11175 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
233 nfv 1914 . . . . . . . . . . 11 𝑥 𝐷𝑋
234 nfcv 2891 . . . . . . . . . . . 12 𝑥0
235 nfcv 2891 . . . . . . . . . . . 12 𝑥
236234, 235, 161nfbr 5154 . . . . . . . . . . 11 𝑥0 ≤ 𝑋 / 𝑥𝐵
237233, 236nfim 1896 . . . . . . . . . 10 𝑥(𝐷𝑋 → 0 ≤ 𝑋 / 𝑥𝐵)
238 breq2 5111 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐷𝑥𝐷𝑋))
239171breq2d 5119 . . . . . . . . . . 11 (𝑥 = 𝑋 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑋 / 𝑥𝐵))
240238, 239imbi12d 344 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐷𝑥 → 0 ≤ 𝐵) ↔ (𝐷𝑋 → 0 ≤ 𝑋 / 𝑥𝐵)))
241237, 240rspc 3576 . . . . . . . . 9 (𝑋𝑆 → (∀𝑥𝑆 (𝐷𝑥 → 0 ≤ 𝐵) → (𝐷𝑋 → 0 ≤ 𝑋 / 𝑥𝐵)))
24233, 103, 105, 241syl3c 66 . . . . . . . 8 (𝜑 → 0 ≤ 𝑋 / 𝑥𝐵)
243 fracle1 13765 . . . . . . . . 9 (𝑋 ∈ ℝ → (𝑋 − (⌊‘𝑋)) ≤ 1)
24474, 243syl 17 . . . . . . . 8 (𝜑 → (𝑋 − (⌊‘𝑋)) ≤ 1)
24577, 232, 88, 242, 244lemul1ad 12122 . . . . . . 7 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ≤ (1 · 𝑋 / 𝑥𝐵))
246143mullidd 11192 . . . . . . 7 (𝜑 → (1 · 𝑋 / 𝑥𝐵) = 𝑋 / 𝑥𝐵)
247245, 246breqtrd 5133 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ≤ 𝑋 / 𝑥𝐵)
24889, 88, 45, 247leadd1dd 11792 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
24990, 88, 45lesubadd2d 11777 . . . . 5 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ↔ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
250248, 249mpbird 257 . . . 4 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
25173, 91, 45, 231, 250letrd 11331 . . 3 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
25221, 72readdcld 11203 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸) ∈ ℝ)
253 fracge0 13766 . . . . . . 7 (𝑋 ∈ ℝ → 0 ≤ (𝑋 − (⌊‘𝑋)))
25474, 253syl 17 . . . . . 6 (𝜑 → 0 ≤ (𝑋 − (⌊‘𝑋)))
25577, 88, 254, 242mulge0d 11755 . . . . 5 (𝜑 → 0 ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
25645, 89addge02d 11767 . . . . 5 (𝜑 → (0 ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ↔ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
257255, 256mpbid 232 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
258140simpld 494 . . . . . . 7 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) ≤ ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋))
259258, 216, 1803brtr3d 5138 . . . . . 6 (𝜑 → -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
26090, 97lenegd 11757 . . . . . 6 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ↔ -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
261259, 260mpbird 257 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
262 fracle1 13765 . . . . . . . . . 10 (𝑌 ∈ ℝ → (𝑌 − (⌊‘𝑌)) ≤ 1)
26392, 262syl 17 . . . . . . . . 9 (𝜑 → (𝑌 − (⌊‘𝑌)) ≤ 1)
26495, 232, 72, 112, 263lemul1ad 12122 . . . . . . . 8 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ≤ (1 · 𝐸))
265185mullidd 11192 . . . . . . . 8 (𝜑 → (1 · 𝐸) = 𝐸)
266264, 265breqtrd 5133 . . . . . . 7 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ≤ 𝐸)
26796, 72, 21, 266leadd1dd 11792 . . . . . 6 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ (𝐸 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
268185, 57addcomd 11376 . . . . . 6 (𝜑 → (𝐸 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
269267, 268breqtrd 5133 . . . . 5 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
27090, 97, 252, 261, 269letrd 11331 . . . 4 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
27145, 90, 252, 257, 270letrd 11331 . . 3 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
27245, 21, 72absdifled 15403 . . 3 (𝜑 → ((abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))) ≤ 𝐸 ↔ (((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))))
273251, 271, 272mpbir2and 713 . 2 (𝜑 → (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))) ≤ 𝐸)
27460, 273eqbrtrd 5129 1 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) ≤ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  csb 3862  wss 3914  {cpr 4591   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  *cxr 11207  cle 11209  cmin 11405  -cneg 11406  cz 12529  cuz 12793  (,)cioo 13306  ...cfz 13468  cfl 13752  abscabs 15200  Σcsu 15652   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  logfacbnd3  27134  log2sumbnd  27455
  Copyright terms: Public domain W3C validator