MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsum2 Structured version   Visualization version   GIF version

Theorem dvfsum2 25998
Description: The reverse of dvfsumrlim 25995, when comparing a finite sum of increasing terms to an integral. In this case there is no point in stating the limit properties, because the terms of the sum aren't approaching zero, but there is nevertheless still a natural asymptotic statement that can be made. (Contributed by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
dvfsum2.s 𝑆 = (𝑇(,)+∞)
dvfsum2.z 𝑍 = (ℤ𝑀)
dvfsum2.m (𝜑𝑀 ∈ ℤ)
dvfsum2.d (𝜑𝐷 ∈ ℝ)
dvfsum2.u (𝜑𝑈 ∈ ℝ*)
dvfsum2.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum2.t (𝜑𝑇 ∈ ℝ)
dvfsum2.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum2.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum2.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum2.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum2.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum2.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐵𝐶)
dvfsum2.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsum2.0 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
dvfsum2.1 (𝜑𝑋𝑆)
dvfsum2.2 (𝜑𝑌𝑆)
dvfsum2.3 (𝜑𝐷𝑋)
dvfsum2.4 (𝜑𝑋𝑌)
dvfsum2.5 (𝜑𝑌𝑈)
dvfsum2.e (𝑥 = 𝑌𝐵 = 𝐸)
Assertion
Ref Expression
dvfsum2 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) ≤ 𝐸)
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑥,𝐸   𝑘,𝑀,𝑥   𝑆,𝑘,𝑥   𝑘,𝑋,𝑥   𝑘,𝑌,𝑥   𝑥,𝑇   𝑈,𝑘,𝑥   𝑥,𝑉   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐸(𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑘)   𝑍(𝑘)

Proof of Theorem dvfsum2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvfsum2.2 . . . . . 6 (𝜑𝑌𝑆)
2 fzfid 13996 . . . . . . . 8 (𝜑 → (𝑀...(⌊‘𝑌)) ∈ Fin)
3 dvfsum2.b2 . . . . . . . . . 10 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
43ralrimiva 3133 . . . . . . . . 9 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℝ)
5 elfzuz 13542 . . . . . . . . . 10 (𝑘 ∈ (𝑀...(⌊‘𝑌)) → 𝑘 ∈ (ℤ𝑀))
6 dvfsum2.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
75, 6eleqtrrdi 2846 . . . . . . . . 9 (𝑘 ∈ (𝑀...(⌊‘𝑌)) → 𝑘𝑍)
8 dvfsum2.c . . . . . . . . . . 11 (𝑥 = 𝑘𝐵 = 𝐶)
98eleq1d 2820 . . . . . . . . . 10 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
109rspccva 3605 . . . . . . . . 9 ((∀𝑥𝑍 𝐵 ∈ ℝ ∧ 𝑘𝑍) → 𝐶 ∈ ℝ)
114, 7, 10syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑌))) → 𝐶 ∈ ℝ)
122, 11fsumrecl 15755 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 ∈ ℝ)
13 dvfsum2.a . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
1413ralrimiva 3133 . . . . . . . 8 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
15 nfcsb1v 3903 . . . . . . . . . 10 𝑥𝑌 / 𝑥𝐴
1615nfel1 2916 . . . . . . . . 9 𝑥𝑌 / 𝑥𝐴 ∈ ℝ
17 csbeq1a 3893 . . . . . . . . . 10 (𝑥 = 𝑌𝐴 = 𝑌 / 𝑥𝐴)
1817eleq1d 2820 . . . . . . . . 9 (𝑥 = 𝑌 → (𝐴 ∈ ℝ ↔ 𝑌 / 𝑥𝐴 ∈ ℝ))
1916, 18rspc 3594 . . . . . . . 8 (𝑌𝑆 → (∀𝑥𝑆 𝐴 ∈ ℝ → 𝑌 / 𝑥𝐴 ∈ ℝ))
201, 14, 19sylc 65 . . . . . . 7 (𝜑𝑌 / 𝑥𝐴 ∈ ℝ)
2112, 20resubcld 11670 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℝ)
22 nfcv 2899 . . . . . . 7 𝑥𝑌
23 nfcv 2899 . . . . . . . 8 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶
24 nfcv 2899 . . . . . . . 8 𝑥
2523, 24, 15nfov 7440 . . . . . . 7 𝑥𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)
26 fveq2 6881 . . . . . . . . . 10 (𝑥 = 𝑌 → (⌊‘𝑥) = (⌊‘𝑌))
2726oveq2d 7426 . . . . . . . . 9 (𝑥 = 𝑌 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑌)))
2827sumeq1d 15721 . . . . . . . 8 (𝑥 = 𝑌 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶)
2928, 17oveq12d 7428 . . . . . . 7 (𝑥 = 𝑌 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
30 dvfsum2.g . . . . . . 7 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
3122, 25, 29, 30fvmptf 7012 . . . . . 6 ((𝑌𝑆 ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℝ) → (𝐺𝑌) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
321, 21, 31syl2anc 584 . . . . 5 (𝜑 → (𝐺𝑌) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
33 dvfsum2.1 . . . . . 6 (𝜑𝑋𝑆)
34 fzfid 13996 . . . . . . . 8 (𝜑 → (𝑀...(⌊‘𝑋)) ∈ Fin)
35 elfzuz 13542 . . . . . . . . . 10 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘 ∈ (ℤ𝑀))
3635, 6eleqtrrdi 2846 . . . . . . . . 9 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘𝑍)
374, 36, 10syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℝ)
3834, 37fsumrecl 15755 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℝ)
39 nfcsb1v 3903 . . . . . . . . . 10 𝑥𝑋 / 𝑥𝐴
4039nfel1 2916 . . . . . . . . 9 𝑥𝑋 / 𝑥𝐴 ∈ ℝ
41 csbeq1a 3893 . . . . . . . . . 10 (𝑥 = 𝑋𝐴 = 𝑋 / 𝑥𝐴)
4241eleq1d 2820 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐴 ∈ ℝ ↔ 𝑋 / 𝑥𝐴 ∈ ℝ))
4340, 42rspc 3594 . . . . . . . 8 (𝑋𝑆 → (∀𝑥𝑆 𝐴 ∈ ℝ → 𝑋 / 𝑥𝐴 ∈ ℝ))
4433, 14, 43sylc 65 . . . . . . 7 (𝜑𝑋 / 𝑥𝐴 ∈ ℝ)
4538, 44resubcld 11670 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℝ)
46 nfcv 2899 . . . . . . 7 𝑥𝑋
47 nfcv 2899 . . . . . . . 8 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶
4847, 24, 39nfov 7440 . . . . . . 7 𝑥𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)
49 fveq2 6881 . . . . . . . . . 10 (𝑥 = 𝑋 → (⌊‘𝑥) = (⌊‘𝑋))
5049oveq2d 7426 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑋)))
5150sumeq1d 15721 . . . . . . . 8 (𝑥 = 𝑋 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
5251, 41oveq12d 7428 . . . . . . 7 (𝑥 = 𝑋 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5346, 48, 52, 30fvmptf 7012 . . . . . 6 ((𝑋𝑆 ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℝ) → (𝐺𝑋) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5433, 45, 53syl2anc 584 . . . . 5 (𝜑 → (𝐺𝑋) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5532, 54oveq12d 7428 . . . 4 (𝜑 → ((𝐺𝑌) − (𝐺𝑋)) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
5655fveq2d 6885 . . 3 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) = (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
5721recnd 11268 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
5845recnd 11268 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℂ)
5957, 58abssubd 15477 . . 3 (𝜑 → (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))) = (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
6056, 59eqtrd 2771 . 2 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) = (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
61 dvfsum2.s . . . . . . . . . 10 𝑆 = (𝑇(,)+∞)
62 ioossre 13429 . . . . . . . . . 10 (𝑇(,)+∞) ⊆ ℝ
6361, 62eqsstri 4010 . . . . . . . . 9 𝑆 ⊆ ℝ
6463a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℝ)
65 dvfsum2.b1 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵𝑉)
66 dvfsum2.b3 . . . . . . . 8 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
6764, 13, 65, 66dvmptrecl 25987 . . . . . . 7 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
6867ralrimiva 3133 . . . . . 6 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
69 dvfsum2.e . . . . . . . 8 (𝑥 = 𝑌𝐵 = 𝐸)
7069eleq1d 2820 . . . . . . 7 (𝑥 = 𝑌 → (𝐵 ∈ ℝ ↔ 𝐸 ∈ ℝ))
7170rspcv 3602 . . . . . 6 (𝑌𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝐸 ∈ ℝ))
721, 68, 71sylc 65 . . . . 5 (𝜑𝐸 ∈ ℝ)
7321, 72resubcld 11670 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ∈ ℝ)
7463, 33sselid 3961 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
75 reflcl 13818 . . . . . . . . 9 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
7674, 75syl 17 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ∈ ℝ)
7774, 76resubcld 11670 . . . . . . 7 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℝ)
78 nfv 1914 . . . . . . . . . 10 𝑚 𝐵 ∈ ℝ
79 nfcsb1v 3903 . . . . . . . . . . 11 𝑥𝑚 / 𝑥𝐵
8079nfel1 2916 . . . . . . . . . 10 𝑥𝑚 / 𝑥𝐵 ∈ ℝ
81 csbeq1a 3893 . . . . . . . . . . 11 (𝑥 = 𝑚𝐵 = 𝑚 / 𝑥𝐵)
8281eleq1d 2820 . . . . . . . . . 10 (𝑥 = 𝑚 → (𝐵 ∈ ℝ ↔ 𝑚 / 𝑥𝐵 ∈ ℝ))
8378, 80, 82cbvralw 3290 . . . . . . . . 9 (∀𝑥𝑆 𝐵 ∈ ℝ ↔ ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
8468, 83sylib 218 . . . . . . . 8 (𝜑 → ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
85 csbeq1 3882 . . . . . . . . . 10 (𝑚 = 𝑋𝑚 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
8685eleq1d 2820 . . . . . . . . 9 (𝑚 = 𝑋 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
8786rspcv 3602 . . . . . . . 8 (𝑋𝑆 → (∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ → 𝑋 / 𝑥𝐵 ∈ ℝ))
8833, 84, 87sylc 65 . . . . . . 7 (𝜑𝑋 / 𝑥𝐵 ∈ ℝ)
8977, 88remulcld 11270 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℝ)
9089, 45readdcld 11269 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℝ)
9190, 88resubcld 11670 . . . 4 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ∈ ℝ)
9263, 1sselid 3961 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ)
93 reflcl 13818 . . . . . . . . . 10 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
9492, 93syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑌) ∈ ℝ)
9592, 94resubcld 11670 . . . . . . . 8 (𝜑 → (𝑌 − (⌊‘𝑌)) ∈ ℝ)
9695, 72remulcld 11270 . . . . . . 7 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ∈ ℝ)
9796, 21readdcld 11269 . . . . . 6 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℝ)
9897, 72resubcld 11670 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) ∈ ℝ)
99 fracge0 13826 . . . . . . . . 9 (𝑌 ∈ ℝ → 0 ≤ (𝑌 − (⌊‘𝑌)))
10092, 99syl 17 . . . . . . . 8 (𝜑 → 0 ≤ (𝑌 − (⌊‘𝑌)))
101 dvfsum2.0 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
102101expr 456 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝐷𝑥 → 0 ≤ 𝐵))
103102ralrimiva 3133 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (𝐷𝑥 → 0 ≤ 𝐵))
104 dvfsum2.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ)
105 dvfsum2.3 . . . . . . . . . 10 (𝜑𝐷𝑋)
106 dvfsum2.4 . . . . . . . . . 10 (𝜑𝑋𝑌)
107104, 74, 92, 105, 106letrd 11397 . . . . . . . . 9 (𝜑𝐷𝑌)
108 breq2 5128 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝐷𝑥𝐷𝑌))
10969breq2d 5136 . . . . . . . . . . 11 (𝑥 = 𝑌 → (0 ≤ 𝐵 ↔ 0 ≤ 𝐸))
110108, 109imbi12d 344 . . . . . . . . . 10 (𝑥 = 𝑌 → ((𝐷𝑥 → 0 ≤ 𝐵) ↔ (𝐷𝑌 → 0 ≤ 𝐸)))
111110rspcv 3602 . . . . . . . . 9 (𝑌𝑆 → (∀𝑥𝑆 (𝐷𝑥 → 0 ≤ 𝐵) → (𝐷𝑌 → 0 ≤ 𝐸)))
1121, 103, 107, 111syl3c 66 . . . . . . . 8 (𝜑 → 0 ≤ 𝐸)
11395, 72, 100, 112mulge0d 11819 . . . . . . 7 (𝜑 → 0 ≤ ((𝑌 − (⌊‘𝑌)) · 𝐸))
11421, 96addge02d 11831 . . . . . . 7 (𝜑 → (0 ≤ ((𝑌 − (⌊‘𝑌)) · 𝐸) ↔ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
115113, 114mpbid 232 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
11621, 97, 72, 115lesub1dd 11858 . . . . 5 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ ((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸))
117 dvfsum2.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
118 dvfsum2.md . . . . . . . . . . 11 (𝜑𝑀 ≤ (𝐷 + 1))
119 dvfsum2.t . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ)
12013renegcld 11669 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → -𝐴 ∈ ℝ)
12167renegcld 11669 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → -𝐵 ∈ ℝ)
1223renegcld 11669 . . . . . . . . . . 11 ((𝜑𝑥𝑍) → -𝐵 ∈ ℝ)
123 reelprrecn 11226 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
124123a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
12513recnd 11268 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝐴 ∈ ℂ)
126124, 125, 65, 66dvmptneg 25927 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥𝑆 ↦ -𝐴)) = (𝑥𝑆 ↦ -𝐵))
1278negeqd 11481 . . . . . . . . . . 11 (𝑥 = 𝑘 → -𝐵 = -𝐶)
128 dvfsum2.u . . . . . . . . . . 11 (𝜑𝑈 ∈ ℝ*)
129 dvfsum2.l . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐵𝐶)
13067adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑘𝑆)) → 𝐵 ∈ ℝ)
1311303adant3 1132 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐵 ∈ ℝ)
132 simp2r 1201 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝑘𝑆)
133683ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → ∀𝑥𝑆 𝐵 ∈ ℝ)
1349rspcv 3602 . . . . . . . . . . . . . 14 (𝑘𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝐶 ∈ ℝ))
135132, 133, 134sylc 65 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶 ∈ ℝ)
136131, 135lenegd 11821 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → (𝐵𝐶 ↔ -𝐶 ≤ -𝐵))
137129, 136mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → -𝐶 ≤ -𝐵)
138 eqid 2736 . . . . . . . . . . 11 (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴))) = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))
139 dvfsum2.5 . . . . . . . . . . 11 (𝜑𝑌𝑈)
14061, 6, 117, 104, 118, 119, 120, 121, 122, 126, 127, 128, 137, 138, 33, 1, 105, 106, 139dvfsumlem3 25992 . . . . . . . . . 10 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) ≤ ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) ∧ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) − 𝑋 / 𝑥-𝐵) ≤ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) − 𝑌 / 𝑥-𝐵)))
141140simprd 495 . . . . . . . . 9 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) − 𝑋 / 𝑥-𝐵) ≤ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) − 𝑌 / 𝑥-𝐵))
14277recnd 11268 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℂ)
14388recnd 11268 . . . . . . . . . . . . . . . 16 (𝜑𝑋 / 𝑥𝐵 ∈ ℂ)
144142, 143mulneg2d 11696 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) = -((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
14538recnd 11268 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℂ)
14644recnd 11268 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 / 𝑥𝐴 ∈ ℂ)
147145, 146neg2subd 11616 . . . . . . . . . . . . . . . 16 (𝜑 → (-Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 − -𝑋 / 𝑥𝐴) = (𝑋 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
14837recnd 11268 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℂ)
14934, 148fsumneg 15808 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 = -Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
150149oveq1d 7425 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴) = (-Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 − -𝑋 / 𝑥𝐴))
151145, 146negsubdi2d 11615 . . . . . . . . . . . . . . . 16 (𝜑 → -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) = (𝑋 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
152147, 150, 1513eqtr4d 2781 . . . . . . . . . . . . . . 15 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴) = -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
153144, 152oveq12d 7428 . . . . . . . . . . . . . 14 (𝜑 → (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) = (-((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
15489recnd 11268 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℂ)
155154, 58negdid 11612 . . . . . . . . . . . . . 14 (𝜑 → -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) = (-((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
156153, 155eqtr4d 2774 . . . . . . . . . . . . 13 (𝜑 → (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) = -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
15790renegcld 11669 . . . . . . . . . . . . 13 (𝜑 → -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℝ)
158156, 157eqeltrd 2835 . . . . . . . . . . . 12 (𝜑 → (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) ∈ ℝ)
159 nfcv 2899 . . . . . . . . . . . . . . 15 𝑥(𝑋 − (⌊‘𝑋))
160 nfcv 2899 . . . . . . . . . . . . . . 15 𝑥 ·
161 nfcsb1v 3903 . . . . . . . . . . . . . . . 16 𝑥𝑋 / 𝑥𝐵
162161nfneg 11483 . . . . . . . . . . . . . . 15 𝑥-𝑋 / 𝑥𝐵
163159, 160, 162nfov 7440 . . . . . . . . . . . . . 14 𝑥((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵)
164 nfcv 2899 . . . . . . . . . . . . . 14 𝑥 +
165 nfcv 2899 . . . . . . . . . . . . . . 15 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶
16639nfneg 11483 . . . . . . . . . . . . . . 15 𝑥-𝑋 / 𝑥𝐴
167165, 24, 166nfov 7440 . . . . . . . . . . . . . 14 𝑥𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)
168163, 164, 167nfov 7440 . . . . . . . . . . . . 13 𝑥(((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴))
169 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋𝑥 = 𝑋)
170169, 49oveq12d 7428 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (𝑥 − (⌊‘𝑥)) = (𝑋 − (⌊‘𝑋)))
171 csbeq1a 3893 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋𝐵 = 𝑋 / 𝑥𝐵)
172171negeqd 11481 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → -𝐵 = -𝑋 / 𝑥𝐵)
173170, 172oveq12d 7428 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝑥 − (⌊‘𝑥)) · -𝐵) = ((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵))
17450sumeq1d 15721 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶)
17541negeqd 11481 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → -𝐴 = -𝑋 / 𝑥𝐴)
176174, 175oveq12d 7428 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴))
177173, 176oveq12d 7428 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)) = (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)))
17846, 168, 177, 138fvmptf 7012 . . . . . . . . . . . 12 ((𝑋𝑆 ∧ (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) ∈ ℝ) → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) = (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)))
17933, 158, 178syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) = (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)))
180179, 156eqtrd 2771 . . . . . . . . . 10 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) = -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
181 csbnegg 11484 . . . . . . . . . . 11 (𝑋𝑆𝑋 / 𝑥-𝐵 = -𝑋 / 𝑥𝐵)
18233, 181syl 17 . . . . . . . . . 10 (𝜑𝑋 / 𝑥-𝐵 = -𝑋 / 𝑥𝐵)
183180, 182oveq12d 7428 . . . . . . . . 9 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) − 𝑋 / 𝑥-𝐵) = (-(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − -𝑋 / 𝑥𝐵))
18495recnd 11268 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 − (⌊‘𝑌)) ∈ ℂ)
18572recnd 11268 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ ℂ)
186184, 185mulneg2d 11696 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑌 − (⌊‘𝑌)) · -𝐸) = -((𝑌 − (⌊‘𝑌)) · 𝐸))
18712recnd 11268 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 ∈ ℂ)
18820recnd 11268 . . . . . . . . . . . . . . . . 17 (𝜑𝑌 / 𝑥𝐴 ∈ ℂ)
189187, 188neg2subd 11616 . . . . . . . . . . . . . . . 16 (𝜑 → (-Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 − -𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶))
19011recnd 11268 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑌))) → 𝐶 ∈ ℂ)
1912, 190fsumneg 15808 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 = -Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶)
192191oveq1d 7425 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴) = (-Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 − -𝑌 / 𝑥𝐴))
193187, 188negsubdi2d 11615 . . . . . . . . . . . . . . . 16 (𝜑 → -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶))
194189, 192, 1933eqtr4d 2781 . . . . . . . . . . . . . . 15 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴) = -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
195186, 194oveq12d 7428 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) = (-((𝑌 − (⌊‘𝑌)) · 𝐸) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
19696recnd 11268 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ∈ ℂ)
197196, 57negdid 11612 . . . . . . . . . . . . . 14 (𝜑 → -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (-((𝑌 − (⌊‘𝑌)) · 𝐸) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
198195, 197eqtr4d 2774 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) = -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
19997renegcld 11669 . . . . . . . . . . . . 13 (𝜑 → -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℝ)
200198, 199eqeltrd 2835 . . . . . . . . . . . 12 (𝜑 → (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) ∈ ℝ)
201 nfcv 2899 . . . . . . . . . . . . . 14 𝑥((𝑌 − (⌊‘𝑌)) · -𝐸)
202 nfcv 2899 . . . . . . . . . . . . . . 15 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶
20315nfneg 11483 . . . . . . . . . . . . . . 15 𝑥-𝑌 / 𝑥𝐴
204202, 24, 203nfov 7440 . . . . . . . . . . . . . 14 𝑥𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)
205201, 164, 204nfov 7440 . . . . . . . . . . . . 13 𝑥(((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴))
206 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌𝑥 = 𝑌)
207206, 26oveq12d 7428 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → (𝑥 − (⌊‘𝑥)) = (𝑌 − (⌊‘𝑌)))
20869negeqd 11481 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → -𝐵 = -𝐸)
209207, 208oveq12d 7428 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → ((𝑥 − (⌊‘𝑥)) · -𝐵) = ((𝑌 − (⌊‘𝑌)) · -𝐸))
21027sumeq1d 15721 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶)
21117negeqd 11481 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → -𝐴 = -𝑌 / 𝑥𝐴)
212210, 211oveq12d 7428 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴))
213209, 212oveq12d 7428 . . . . . . . . . . . . 13 (𝑥 = 𝑌 → (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)) = (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)))
21422, 205, 213, 138fvmptf 7012 . . . . . . . . . . . 12 ((𝑌𝑆 ∧ (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) ∈ ℝ) → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) = (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)))
2151, 200, 214syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) = (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)))
216215, 198eqtrd 2771 . . . . . . . . . 10 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) = -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
217208adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 = 𝑌) → -𝐵 = -𝐸)
2181, 217csbied 3915 . . . . . . . . . 10 (𝜑𝑌 / 𝑥-𝐵 = -𝐸)
219216, 218oveq12d 7428 . . . . . . . . 9 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) − 𝑌 / 𝑥-𝐵) = (-(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − -𝐸))
220141, 183, 2193brtr3d 5155 . . . . . . . 8 (𝜑 → (-(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − -𝑋 / 𝑥𝐵) ≤ (-(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − -𝐸))
22190recnd 11268 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℂ)
222221, 143neg2subd 11616 . . . . . . . 8 (𝜑 → (-(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − -𝑋 / 𝑥𝐵) = (𝑋 / 𝑥𝐵 − (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
22397recnd 11268 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℂ)
224223, 185neg2subd 11616 . . . . . . . 8 (𝜑 → (-(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − -𝐸) = (𝐸 − (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
225220, 222, 2243brtr3d 5155 . . . . . . 7 (𝜑 → (𝑋 / 𝑥𝐵 − (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))) ≤ (𝐸 − (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
226221, 143negsubdi2d 11615 . . . . . . 7 (𝜑 → -((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) = (𝑋 / 𝑥𝐵 − (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
227223, 185negsubdi2d 11615 . . . . . . 7 (𝜑 → -((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) = (𝐸 − (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
228225, 226, 2273brtr4d 5156 . . . . . 6 (𝜑 → -((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ -((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸))
22998, 91lenegd 11821 . . . . . 6 (𝜑 → (((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ↔ -((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ -((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸)))
230228, 229mpbird 257 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵))
23173, 98, 91, 116, 230letrd 11397 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵))
232 1red 11241 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
233 nfv 1914 . . . . . . . . . . 11 𝑥 𝐷𝑋
234 nfcv 2899 . . . . . . . . . . . 12 𝑥0
235 nfcv 2899 . . . . . . . . . . . 12 𝑥
236234, 235, 161nfbr 5171 . . . . . . . . . . 11 𝑥0 ≤ 𝑋 / 𝑥𝐵
237233, 236nfim 1896 . . . . . . . . . 10 𝑥(𝐷𝑋 → 0 ≤ 𝑋 / 𝑥𝐵)
238 breq2 5128 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐷𝑥𝐷𝑋))
239171breq2d 5136 . . . . . . . . . . 11 (𝑥 = 𝑋 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑋 / 𝑥𝐵))
240238, 239imbi12d 344 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐷𝑥 → 0 ≤ 𝐵) ↔ (𝐷𝑋 → 0 ≤ 𝑋 / 𝑥𝐵)))
241237, 240rspc 3594 . . . . . . . . 9 (𝑋𝑆 → (∀𝑥𝑆 (𝐷𝑥 → 0 ≤ 𝐵) → (𝐷𝑋 → 0 ≤ 𝑋 / 𝑥𝐵)))
24233, 103, 105, 241syl3c 66 . . . . . . . 8 (𝜑 → 0 ≤ 𝑋 / 𝑥𝐵)
243 fracle1 13825 . . . . . . . . 9 (𝑋 ∈ ℝ → (𝑋 − (⌊‘𝑋)) ≤ 1)
24474, 243syl 17 . . . . . . . 8 (𝜑 → (𝑋 − (⌊‘𝑋)) ≤ 1)
24577, 232, 88, 242, 244lemul1ad 12186 . . . . . . 7 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ≤ (1 · 𝑋 / 𝑥𝐵))
246143mullidd 11258 . . . . . . 7 (𝜑 → (1 · 𝑋 / 𝑥𝐵) = 𝑋 / 𝑥𝐵)
247245, 246breqtrd 5150 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ≤ 𝑋 / 𝑥𝐵)
24889, 88, 45, 247leadd1dd 11856 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
24990, 88, 45lesubadd2d 11841 . . . . 5 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ↔ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
250248, 249mpbird 257 . . . 4 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
25173, 91, 45, 231, 250letrd 11397 . . 3 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
25221, 72readdcld 11269 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸) ∈ ℝ)
253 fracge0 13826 . . . . . . 7 (𝑋 ∈ ℝ → 0 ≤ (𝑋 − (⌊‘𝑋)))
25474, 253syl 17 . . . . . 6 (𝜑 → 0 ≤ (𝑋 − (⌊‘𝑋)))
25577, 88, 254, 242mulge0d 11819 . . . . 5 (𝜑 → 0 ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
25645, 89addge02d 11831 . . . . 5 (𝜑 → (0 ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ↔ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
257255, 256mpbid 232 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
258140simpld 494 . . . . . . 7 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) ≤ ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋))
259258, 216, 1803brtr3d 5155 . . . . . 6 (𝜑 → -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
26090, 97lenegd 11821 . . . . . 6 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ↔ -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
261259, 260mpbird 257 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
262 fracle1 13825 . . . . . . . . . 10 (𝑌 ∈ ℝ → (𝑌 − (⌊‘𝑌)) ≤ 1)
26392, 262syl 17 . . . . . . . . 9 (𝜑 → (𝑌 − (⌊‘𝑌)) ≤ 1)
26495, 232, 72, 112, 263lemul1ad 12186 . . . . . . . 8 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ≤ (1 · 𝐸))
265185mullidd 11258 . . . . . . . 8 (𝜑 → (1 · 𝐸) = 𝐸)
266264, 265breqtrd 5150 . . . . . . 7 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ≤ 𝐸)
26796, 72, 21, 266leadd1dd 11856 . . . . . 6 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ (𝐸 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
268185, 57addcomd 11442 . . . . . 6 (𝜑 → (𝐸 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
269267, 268breqtrd 5150 . . . . 5 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
27090, 97, 252, 261, 269letrd 11397 . . . 4 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
27145, 90, 252, 257, 270letrd 11397 . . 3 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
27245, 21, 72absdifled 15458 . . 3 (𝜑 → ((abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))) ≤ 𝐸 ↔ (((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))))
273251, 271, 272mpbir2and 713 . 2 (𝜑 → (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))) ≤ 𝐸)
27460, 273eqbrtrd 5146 1 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) ≤ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  csb 3879  wss 3931  {cpr 4608   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  +∞cpnf 11271  *cxr 11273  cle 11275  cmin 11471  -cneg 11472  cz 12593  cuz 12857  (,)cioo 13367  ...cfz 13529  cfl 13812  abscabs 15258  Σcsu 15707   D cdv 25821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825
This theorem is referenced by:  logfacbnd3  27191  log2sumbnd  27512
  Copyright terms: Public domain W3C validator