MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsum2 Structured version   Visualization version   GIF version

Theorem dvfsum2 24138
Description: The reverse of dvfsumrlim 24135, when comparing a finite sum of increasing terms to an integral. In this case there is no point in stating the limit properties, because the terms of the sum aren't approaching zero, but there is nevertheless still a natural asymptotic statement that can be made. (Contributed by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
dvfsum2.s 𝑆 = (𝑇(,)+∞)
dvfsum2.z 𝑍 = (ℤ𝑀)
dvfsum2.m (𝜑𝑀 ∈ ℤ)
dvfsum2.d (𝜑𝐷 ∈ ℝ)
dvfsum2.u (𝜑𝑈 ∈ ℝ*)
dvfsum2.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum2.t (𝜑𝑇 ∈ ℝ)
dvfsum2.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum2.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum2.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum2.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum2.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum2.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐵𝐶)
dvfsum2.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsum2.0 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
dvfsum2.1 (𝜑𝑋𝑆)
dvfsum2.2 (𝜑𝑌𝑆)
dvfsum2.3 (𝜑𝐷𝑋)
dvfsum2.4 (𝜑𝑋𝑌)
dvfsum2.5 (𝜑𝑌𝑈)
dvfsum2.e (𝑥 = 𝑌𝐵 = 𝐸)
Assertion
Ref Expression
dvfsum2 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) ≤ 𝐸)
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑥,𝐸   𝑘,𝑀,𝑥   𝑆,𝑘,𝑥   𝑘,𝑋,𝑥   𝑘,𝑌,𝑥   𝑥,𝑇   𝑈,𝑘,𝑥   𝑥,𝑉   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐸(𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑘)   𝑍(𝑘)

Proof of Theorem dvfsum2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvfsum2.2 . . . . . 6 (𝜑𝑌𝑆)
2 fzfid 13027 . . . . . . . 8 (𝜑 → (𝑀...(⌊‘𝑌)) ∈ Fin)
3 dvfsum2.b2 . . . . . . . . . 10 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
43ralrimiva 3147 . . . . . . . . 9 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℝ)
5 elfzuz 12592 . . . . . . . . . 10 (𝑘 ∈ (𝑀...(⌊‘𝑌)) → 𝑘 ∈ (ℤ𝑀))
6 dvfsum2.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
75, 6syl6eleqr 2889 . . . . . . . . 9 (𝑘 ∈ (𝑀...(⌊‘𝑌)) → 𝑘𝑍)
8 dvfsum2.c . . . . . . . . . . 11 (𝑥 = 𝑘𝐵 = 𝐶)
98eleq1d 2863 . . . . . . . . . 10 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
109rspccva 3496 . . . . . . . . 9 ((∀𝑥𝑍 𝐵 ∈ ℝ ∧ 𝑘𝑍) → 𝐶 ∈ ℝ)
114, 7, 10syl2an 590 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑌))) → 𝐶 ∈ ℝ)
122, 11fsumrecl 14806 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 ∈ ℝ)
13 dvfsum2.a . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
1413ralrimiva 3147 . . . . . . . 8 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
15 nfcsb1v 3744 . . . . . . . . . 10 𝑥𝑌 / 𝑥𝐴
1615nfel1 2956 . . . . . . . . 9 𝑥𝑌 / 𝑥𝐴 ∈ ℝ
17 csbeq1a 3737 . . . . . . . . . 10 (𝑥 = 𝑌𝐴 = 𝑌 / 𝑥𝐴)
1817eleq1d 2863 . . . . . . . . 9 (𝑥 = 𝑌 → (𝐴 ∈ ℝ ↔ 𝑌 / 𝑥𝐴 ∈ ℝ))
1916, 18rspc 3491 . . . . . . . 8 (𝑌𝑆 → (∀𝑥𝑆 𝐴 ∈ ℝ → 𝑌 / 𝑥𝐴 ∈ ℝ))
201, 14, 19sylc 65 . . . . . . 7 (𝜑𝑌 / 𝑥𝐴 ∈ ℝ)
2112, 20resubcld 10750 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℝ)
22 nfcv 2941 . . . . . . 7 𝑥𝑌
23 nfcv 2941 . . . . . . . 8 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶
24 nfcv 2941 . . . . . . . 8 𝑥
2523, 24, 15nfov 6908 . . . . . . 7 𝑥𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)
26 fveq2 6411 . . . . . . . . . 10 (𝑥 = 𝑌 → (⌊‘𝑥) = (⌊‘𝑌))
2726oveq2d 6894 . . . . . . . . 9 (𝑥 = 𝑌 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑌)))
2827sumeq1d 14772 . . . . . . . 8 (𝑥 = 𝑌 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶)
2928, 17oveq12d 6896 . . . . . . 7 (𝑥 = 𝑌 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
30 dvfsum2.g . . . . . . 7 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
3122, 25, 29, 30fvmptf 6526 . . . . . 6 ((𝑌𝑆 ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℝ) → (𝐺𝑌) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
321, 21, 31syl2anc 580 . . . . 5 (𝜑 → (𝐺𝑌) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
33 dvfsum2.1 . . . . . 6 (𝜑𝑋𝑆)
34 fzfid 13027 . . . . . . . 8 (𝜑 → (𝑀...(⌊‘𝑋)) ∈ Fin)
35 elfzuz 12592 . . . . . . . . . 10 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘 ∈ (ℤ𝑀))
3635, 6syl6eleqr 2889 . . . . . . . . 9 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘𝑍)
374, 36, 10syl2an 590 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℝ)
3834, 37fsumrecl 14806 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℝ)
39 nfcsb1v 3744 . . . . . . . . . 10 𝑥𝑋 / 𝑥𝐴
4039nfel1 2956 . . . . . . . . 9 𝑥𝑋 / 𝑥𝐴 ∈ ℝ
41 csbeq1a 3737 . . . . . . . . . 10 (𝑥 = 𝑋𝐴 = 𝑋 / 𝑥𝐴)
4241eleq1d 2863 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐴 ∈ ℝ ↔ 𝑋 / 𝑥𝐴 ∈ ℝ))
4340, 42rspc 3491 . . . . . . . 8 (𝑋𝑆 → (∀𝑥𝑆 𝐴 ∈ ℝ → 𝑋 / 𝑥𝐴 ∈ ℝ))
4433, 14, 43sylc 65 . . . . . . 7 (𝜑𝑋 / 𝑥𝐴 ∈ ℝ)
4538, 44resubcld 10750 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℝ)
46 nfcv 2941 . . . . . . 7 𝑥𝑋
47 nfcv 2941 . . . . . . . 8 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶
4847, 24, 39nfov 6908 . . . . . . 7 𝑥𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)
49 fveq2 6411 . . . . . . . . . 10 (𝑥 = 𝑋 → (⌊‘𝑥) = (⌊‘𝑋))
5049oveq2d 6894 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑋)))
5150sumeq1d 14772 . . . . . . . 8 (𝑥 = 𝑋 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
5251, 41oveq12d 6896 . . . . . . 7 (𝑥 = 𝑋 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5346, 48, 52, 30fvmptf 6526 . . . . . 6 ((𝑋𝑆 ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℝ) → (𝐺𝑋) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5433, 45, 53syl2anc 580 . . . . 5 (𝜑 → (𝐺𝑋) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5532, 54oveq12d 6896 . . . 4 (𝜑 → ((𝐺𝑌) − (𝐺𝑋)) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
5655fveq2d 6415 . . 3 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) = (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
5721recnd 10357 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
5845recnd 10357 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℂ)
5957, 58abssubd 14533 . . 3 (𝜑 → (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))) = (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
6056, 59eqtrd 2833 . 2 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) = (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
61 dvfsum2.s . . . . . . . . . 10 𝑆 = (𝑇(,)+∞)
62 ioossre 12484 . . . . . . . . . 10 (𝑇(,)+∞) ⊆ ℝ
6361, 62eqsstri 3831 . . . . . . . . 9 𝑆 ⊆ ℝ
6463a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℝ)
65 dvfsum2.b1 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵𝑉)
66 dvfsum2.b3 . . . . . . . 8 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
6764, 13, 65, 66dvmptrecl 24128 . . . . . . 7 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
6867ralrimiva 3147 . . . . . 6 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
69 dvfsum2.e . . . . . . . 8 (𝑥 = 𝑌𝐵 = 𝐸)
7069eleq1d 2863 . . . . . . 7 (𝑥 = 𝑌 → (𝐵 ∈ ℝ ↔ 𝐸 ∈ ℝ))
7170rspcv 3493 . . . . . 6 (𝑌𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝐸 ∈ ℝ))
721, 68, 71sylc 65 . . . . 5 (𝜑𝐸 ∈ ℝ)
7321, 72resubcld 10750 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ∈ ℝ)
7463, 33sseldi 3796 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
75 reflcl 12852 . . . . . . . . 9 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
7674, 75syl 17 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ∈ ℝ)
7774, 76resubcld 10750 . . . . . . 7 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℝ)
78 nfv 2010 . . . . . . . . . 10 𝑚 𝐵 ∈ ℝ
79 nfcsb1v 3744 . . . . . . . . . . 11 𝑥𝑚 / 𝑥𝐵
8079nfel1 2956 . . . . . . . . . 10 𝑥𝑚 / 𝑥𝐵 ∈ ℝ
81 csbeq1a 3737 . . . . . . . . . . 11 (𝑥 = 𝑚𝐵 = 𝑚 / 𝑥𝐵)
8281eleq1d 2863 . . . . . . . . . 10 (𝑥 = 𝑚 → (𝐵 ∈ ℝ ↔ 𝑚 / 𝑥𝐵 ∈ ℝ))
8378, 80, 82cbvral 3350 . . . . . . . . 9 (∀𝑥𝑆 𝐵 ∈ ℝ ↔ ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
8468, 83sylib 210 . . . . . . . 8 (𝜑 → ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
85 csbeq1 3731 . . . . . . . . . 10 (𝑚 = 𝑋𝑚 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
8685eleq1d 2863 . . . . . . . . 9 (𝑚 = 𝑋 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
8786rspcv 3493 . . . . . . . 8 (𝑋𝑆 → (∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ → 𝑋 / 𝑥𝐵 ∈ ℝ))
8833, 84, 87sylc 65 . . . . . . 7 (𝜑𝑋 / 𝑥𝐵 ∈ ℝ)
8977, 88remulcld 10359 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℝ)
9089, 45readdcld 10358 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℝ)
9190, 88resubcld 10750 . . . 4 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ∈ ℝ)
9263, 1sseldi 3796 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ)
93 reflcl 12852 . . . . . . . . . 10 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
9492, 93syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑌) ∈ ℝ)
9592, 94resubcld 10750 . . . . . . . 8 (𝜑 → (𝑌 − (⌊‘𝑌)) ∈ ℝ)
9695, 72remulcld 10359 . . . . . . 7 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ∈ ℝ)
9796, 21readdcld 10358 . . . . . 6 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℝ)
9897, 72resubcld 10750 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) ∈ ℝ)
99 fracge0 12860 . . . . . . . . 9 (𝑌 ∈ ℝ → 0 ≤ (𝑌 − (⌊‘𝑌)))
10092, 99syl 17 . . . . . . . 8 (𝜑 → 0 ≤ (𝑌 − (⌊‘𝑌)))
101 dvfsum2.0 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
102101expr 449 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝐷𝑥 → 0 ≤ 𝐵))
103102ralrimiva 3147 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (𝐷𝑥 → 0 ≤ 𝐵))
104 dvfsum2.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ)
105 dvfsum2.3 . . . . . . . . . 10 (𝜑𝐷𝑋)
106 dvfsum2.4 . . . . . . . . . 10 (𝜑𝑋𝑌)
107104, 74, 92, 105, 106letrd 10484 . . . . . . . . 9 (𝜑𝐷𝑌)
108 breq2 4847 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝐷𝑥𝐷𝑌))
10969breq2d 4855 . . . . . . . . . . 11 (𝑥 = 𝑌 → (0 ≤ 𝐵 ↔ 0 ≤ 𝐸))
110108, 109imbi12d 336 . . . . . . . . . 10 (𝑥 = 𝑌 → ((𝐷𝑥 → 0 ≤ 𝐵) ↔ (𝐷𝑌 → 0 ≤ 𝐸)))
111110rspcv 3493 . . . . . . . . 9 (𝑌𝑆 → (∀𝑥𝑆 (𝐷𝑥 → 0 ≤ 𝐵) → (𝐷𝑌 → 0 ≤ 𝐸)))
1121, 103, 107, 111syl3c 66 . . . . . . . 8 (𝜑 → 0 ≤ 𝐸)
11395, 72, 100, 112mulge0d 10896 . . . . . . 7 (𝜑 → 0 ≤ ((𝑌 − (⌊‘𝑌)) · 𝐸))
11421, 96addge02d 10908 . . . . . . 7 (𝜑 → (0 ≤ ((𝑌 − (⌊‘𝑌)) · 𝐸) ↔ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
115113, 114mpbid 224 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
11621, 97, 72, 115lesub1dd 10935 . . . . 5 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ ((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸))
117 dvfsum2.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
118 dvfsum2.md . . . . . . . . . . 11 (𝜑𝑀 ≤ (𝐷 + 1))
119 dvfsum2.t . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ)
12013renegcld 10749 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → -𝐴 ∈ ℝ)
12167renegcld 10749 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → -𝐵 ∈ ℝ)
1223renegcld 10749 . . . . . . . . . . 11 ((𝜑𝑥𝑍) → -𝐵 ∈ ℝ)
123 reelprrecn 10316 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
124123a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
12513recnd 10357 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝐴 ∈ ℂ)
126124, 125, 65, 66dvmptneg 24070 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥𝑆 ↦ -𝐴)) = (𝑥𝑆 ↦ -𝐵))
1278negeqd 10566 . . . . . . . . . . 11 (𝑥 = 𝑘 → -𝐵 = -𝐶)
128 dvfsum2.u . . . . . . . . . . 11 (𝜑𝑈 ∈ ℝ*)
129 dvfsum2.l . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐵𝐶)
13067adantrr 709 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑘𝑆)) → 𝐵 ∈ ℝ)
1311303adant3 1163 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐵 ∈ ℝ)
132 simp2r 1258 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝑘𝑆)
133683ad2ant1 1164 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → ∀𝑥𝑆 𝐵 ∈ ℝ)
1349rspcv 3493 . . . . . . . . . . . . . 14 (𝑘𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝐶 ∈ ℝ))
135132, 133, 134sylc 65 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶 ∈ ℝ)
136131, 135lenegd 10898 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → (𝐵𝐶 ↔ -𝐶 ≤ -𝐵))
137129, 136mpbid 224 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → -𝐶 ≤ -𝐵)
138 eqid 2799 . . . . . . . . . . 11 (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴))) = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))
139 dvfsum2.5 . . . . . . . . . . 11 (𝜑𝑌𝑈)
14061, 6, 117, 104, 118, 119, 120, 121, 122, 126, 127, 128, 137, 138, 33, 1, 105, 106, 139dvfsumlem3 24132 . . . . . . . . . 10 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) ≤ ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) ∧ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) − 𝑋 / 𝑥-𝐵) ≤ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) − 𝑌 / 𝑥-𝐵)))
141140simprd 490 . . . . . . . . 9 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) − 𝑋 / 𝑥-𝐵) ≤ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) − 𝑌 / 𝑥-𝐵))
14277recnd 10357 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℂ)
14388recnd 10357 . . . . . . . . . . . . . . . 16 (𝜑𝑋 / 𝑥𝐵 ∈ ℂ)
144142, 143mulneg2d 10776 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) = -((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
14538recnd 10357 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℂ)
14644recnd 10357 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 / 𝑥𝐴 ∈ ℂ)
147145, 146neg2subd 10701 . . . . . . . . . . . . . . . 16 (𝜑 → (-Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 − -𝑋 / 𝑥𝐴) = (𝑋 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
14837recnd 10357 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℂ)
14934, 148fsumneg 14857 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 = -Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
150149oveq1d 6893 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴) = (-Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 − -𝑋 / 𝑥𝐴))
151145, 146negsubdi2d 10700 . . . . . . . . . . . . . . . 16 (𝜑 → -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) = (𝑋 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
152147, 150, 1513eqtr4d 2843 . . . . . . . . . . . . . . 15 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴) = -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
153144, 152oveq12d 6896 . . . . . . . . . . . . . 14 (𝜑 → (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) = (-((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
15489recnd 10357 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℂ)
155154, 58negdid 10697 . . . . . . . . . . . . . 14 (𝜑 → -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) = (-((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
156153, 155eqtr4d 2836 . . . . . . . . . . . . 13 (𝜑 → (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) = -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
15790renegcld 10749 . . . . . . . . . . . . 13 (𝜑 → -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℝ)
158156, 157eqeltrd 2878 . . . . . . . . . . . 12 (𝜑 → (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) ∈ ℝ)
159 nfcv 2941 . . . . . . . . . . . . . . 15 𝑥(𝑋 − (⌊‘𝑋))
160 nfcv 2941 . . . . . . . . . . . . . . 15 𝑥 ·
161 nfcsb1v 3744 . . . . . . . . . . . . . . . 16 𝑥𝑋 / 𝑥𝐵
162161nfneg 10568 . . . . . . . . . . . . . . 15 𝑥-𝑋 / 𝑥𝐵
163159, 160, 162nfov 6908 . . . . . . . . . . . . . 14 𝑥((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵)
164 nfcv 2941 . . . . . . . . . . . . . 14 𝑥 +
165 nfcv 2941 . . . . . . . . . . . . . . 15 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶
16639nfneg 10568 . . . . . . . . . . . . . . 15 𝑥-𝑋 / 𝑥𝐴
167165, 24, 166nfov 6908 . . . . . . . . . . . . . 14 𝑥𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)
168163, 164, 167nfov 6908 . . . . . . . . . . . . 13 𝑥(((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴))
169 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋𝑥 = 𝑋)
170169, 49oveq12d 6896 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (𝑥 − (⌊‘𝑥)) = (𝑋 − (⌊‘𝑋)))
171 csbeq1a 3737 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋𝐵 = 𝑋 / 𝑥𝐵)
172171negeqd 10566 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → -𝐵 = -𝑋 / 𝑥𝐵)
173170, 172oveq12d 6896 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝑥 − (⌊‘𝑥)) · -𝐵) = ((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵))
17450sumeq1d 14772 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶)
17541negeqd 10566 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → -𝐴 = -𝑋 / 𝑥𝐴)
176174, 175oveq12d 6896 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴))
177173, 176oveq12d 6896 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)) = (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)))
17846, 168, 177, 138fvmptf 6526 . . . . . . . . . . . 12 ((𝑋𝑆 ∧ (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)) ∈ ℝ) → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) = (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)))
17933, 158, 178syl2anc 580 . . . . . . . . . . 11 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) = (((𝑋 − (⌊‘𝑋)) · -𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))-𝐶 − -𝑋 / 𝑥𝐴)))
180179, 156eqtrd 2833 . . . . . . . . . 10 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) = -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
181 csbnegg 10569 . . . . . . . . . . 11 (𝑋𝑆𝑋 / 𝑥-𝐵 = -𝑋 / 𝑥𝐵)
18233, 181syl 17 . . . . . . . . . 10 (𝜑𝑋 / 𝑥-𝐵 = -𝑋 / 𝑥𝐵)
183180, 182oveq12d 6896 . . . . . . . . 9 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋) − 𝑋 / 𝑥-𝐵) = (-(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − -𝑋 / 𝑥𝐵))
18495recnd 10357 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 − (⌊‘𝑌)) ∈ ℂ)
18572recnd 10357 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ ℂ)
186184, 185mulneg2d 10776 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑌 − (⌊‘𝑌)) · -𝐸) = -((𝑌 − (⌊‘𝑌)) · 𝐸))
18712recnd 10357 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 ∈ ℂ)
18820recnd 10357 . . . . . . . . . . . . . . . . 17 (𝜑𝑌 / 𝑥𝐴 ∈ ℂ)
189187, 188neg2subd 10701 . . . . . . . . . . . . . . . 16 (𝜑 → (-Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 − -𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶))
19011recnd 10357 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑌))) → 𝐶 ∈ ℂ)
1912, 190fsumneg 14857 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 = -Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶)
192191oveq1d 6893 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴) = (-Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 − -𝑌 / 𝑥𝐴))
193187, 188negsubdi2d 10700 . . . . . . . . . . . . . . . 16 (𝜑 → -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 − Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶))
194189, 192, 1933eqtr4d 2843 . . . . . . . . . . . . . . 15 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴) = -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
195186, 194oveq12d 6896 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) = (-((𝑌 − (⌊‘𝑌)) · 𝐸) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
19696recnd 10357 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ∈ ℂ)
197196, 57negdid 10697 . . . . . . . . . . . . . 14 (𝜑 → -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (-((𝑌 − (⌊‘𝑌)) · 𝐸) + -(Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
198195, 197eqtr4d 2836 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) = -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
19997renegcld 10749 . . . . . . . . . . . . 13 (𝜑 → -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℝ)
200198, 199eqeltrd 2878 . . . . . . . . . . . 12 (𝜑 → (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) ∈ ℝ)
201 nfcv 2941 . . . . . . . . . . . . . 14 𝑥((𝑌 − (⌊‘𝑌)) · -𝐸)
202 nfcv 2941 . . . . . . . . . . . . . . 15 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶
20315nfneg 10568 . . . . . . . . . . . . . . 15 𝑥-𝑌 / 𝑥𝐴
204202, 24, 203nfov 6908 . . . . . . . . . . . . . 14 𝑥𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)
205201, 164, 204nfov 6908 . . . . . . . . . . . . 13 𝑥(((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴))
206 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌𝑥 = 𝑌)
207206, 26oveq12d 6896 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → (𝑥 − (⌊‘𝑥)) = (𝑌 − (⌊‘𝑌)))
20869negeqd 10566 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → -𝐵 = -𝐸)
209207, 208oveq12d 6896 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → ((𝑥 − (⌊‘𝑥)) · -𝐵) = ((𝑌 − (⌊‘𝑌)) · -𝐸))
21027sumeq1d 14772 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶)
21117negeqd 10566 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → -𝐴 = -𝑌 / 𝑥𝐴)
212210, 211oveq12d 6896 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴))
213209, 212oveq12d 6896 . . . . . . . . . . . . 13 (𝑥 = 𝑌 → (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)) = (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)))
21422, 205, 213, 138fvmptf 6526 . . . . . . . . . . . 12 ((𝑌𝑆 ∧ (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)) ∈ ℝ) → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) = (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)))
2151, 200, 214syl2anc 580 . . . . . . . . . . 11 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) = (((𝑌 − (⌊‘𝑌)) · -𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))-𝐶 − -𝑌 / 𝑥𝐴)))
216215, 198eqtrd 2833 . . . . . . . . . 10 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) = -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
217208adantl 474 . . . . . . . . . . 11 ((𝜑𝑥 = 𝑌) → -𝐵 = -𝐸)
2181, 217csbied 3755 . . . . . . . . . 10 (𝜑𝑌 / 𝑥-𝐵 = -𝐸)
219216, 218oveq12d 6896 . . . . . . . . 9 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) − 𝑌 / 𝑥-𝐵) = (-(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − -𝐸))
220141, 183, 2193brtr3d 4874 . . . . . . . 8 (𝜑 → (-(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − -𝑋 / 𝑥𝐵) ≤ (-(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − -𝐸))
22190recnd 10357 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℂ)
222221, 143neg2subd 10701 . . . . . . . 8 (𝜑 → (-(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − -𝑋 / 𝑥𝐵) = (𝑋 / 𝑥𝐵 − (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
22397recnd 10357 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℂ)
224223, 185neg2subd 10701 . . . . . . . 8 (𝜑 → (-(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − -𝐸) = (𝐸 − (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
225220, 222, 2243brtr3d 4874 . . . . . . 7 (𝜑 → (𝑋 / 𝑥𝐵 − (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))) ≤ (𝐸 − (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
226221, 143negsubdi2d 10700 . . . . . . 7 (𝜑 → -((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) = (𝑋 / 𝑥𝐵 − (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
227223, 185negsubdi2d 10700 . . . . . . 7 (𝜑 → -((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) = (𝐸 − (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
228225, 226, 2273brtr4d 4875 . . . . . 6 (𝜑 → -((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ -((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸))
22998, 91lenegd 10898 . . . . . 6 (𝜑 → (((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ↔ -((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ -((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸)))
230228, 229mpbird 249 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝐸) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵))
23173, 98, 91, 116, 230letrd 10484 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵))
232 1red 10329 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
233 nfv 2010 . . . . . . . . . . 11 𝑥 𝐷𝑋
234 nfcv 2941 . . . . . . . . . . . 12 𝑥0
235 nfcv 2941 . . . . . . . . . . . 12 𝑥
236234, 235, 161nfbr 4890 . . . . . . . . . . 11 𝑥0 ≤ 𝑋 / 𝑥𝐵
237233, 236nfim 1996 . . . . . . . . . 10 𝑥(𝐷𝑋 → 0 ≤ 𝑋 / 𝑥𝐵)
238 breq2 4847 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐷𝑥𝐷𝑋))
239171breq2d 4855 . . . . . . . . . . 11 (𝑥 = 𝑋 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑋 / 𝑥𝐵))
240238, 239imbi12d 336 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐷𝑥 → 0 ≤ 𝐵) ↔ (𝐷𝑋 → 0 ≤ 𝑋 / 𝑥𝐵)))
241237, 240rspc 3491 . . . . . . . . 9 (𝑋𝑆 → (∀𝑥𝑆 (𝐷𝑥 → 0 ≤ 𝐵) → (𝐷𝑋 → 0 ≤ 𝑋 / 𝑥𝐵)))
24233, 103, 105, 241syl3c 66 . . . . . . . 8 (𝜑 → 0 ≤ 𝑋 / 𝑥𝐵)
243 fracle1 12859 . . . . . . . . 9 (𝑋 ∈ ℝ → (𝑋 − (⌊‘𝑋)) ≤ 1)
24474, 243syl 17 . . . . . . . 8 (𝜑 → (𝑋 − (⌊‘𝑋)) ≤ 1)
24577, 232, 88, 242, 244lemul1ad 11255 . . . . . . 7 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ≤ (1 · 𝑋 / 𝑥𝐵))
246143mulid2d 10347 . . . . . . 7 (𝜑 → (1 · 𝑋 / 𝑥𝐵) = 𝑋 / 𝑥𝐵)
247245, 246breqtrd 4869 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ≤ 𝑋 / 𝑥𝐵)
24889, 88, 45, 247leadd1dd 10933 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
24990, 88, 45lesubadd2d 10918 . . . . 5 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ↔ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
250248, 249mpbird 249 . . . 4 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
25173, 91, 45, 231, 250letrd 10484 . . 3 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
25221, 72readdcld 10358 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸) ∈ ℝ)
253 fracge0 12860 . . . . . . 7 (𝑋 ∈ ℝ → 0 ≤ (𝑋 − (⌊‘𝑋)))
25474, 253syl 17 . . . . . 6 (𝜑 → 0 ≤ (𝑋 − (⌊‘𝑋)))
25577, 88, 254, 242mulge0d 10896 . . . . 5 (𝜑 → 0 ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
25645, 89addge02d 10908 . . . . 5 (𝜑 → (0 ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ↔ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
257255, 256mpbid 224 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
258140simpld 489 . . . . . . 7 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑌) ≤ ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · -𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))-𝐶 − -𝐴)))‘𝑋))
259258, 216, 1803brtr3d 4874 . . . . . 6 (𝜑 → -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
26090, 97lenegd 10898 . . . . . 6 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ↔ -(((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ -(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
261259, 260mpbird 249 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
262 fracle1 12859 . . . . . . . . . 10 (𝑌 ∈ ℝ → (𝑌 − (⌊‘𝑌)) ≤ 1)
26392, 262syl 17 . . . . . . . . 9 (𝜑 → (𝑌 − (⌊‘𝑌)) ≤ 1)
26495, 232, 72, 112, 263lemul1ad 11255 . . . . . . . 8 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ≤ (1 · 𝐸))
265185mulid2d 10347 . . . . . . . 8 (𝜑 → (1 · 𝐸) = 𝐸)
266264, 265breqtrd 4869 . . . . . . 7 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝐸) ≤ 𝐸)
26796, 72, 21, 266leadd1dd 10933 . . . . . 6 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ (𝐸 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
268185, 57addcomd 10528 . . . . . 6 (𝜑 → (𝐸 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
269267, 268breqtrd 4869 . . . . 5 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝐸) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
27090, 97, 252, 261, 269letrd 10484 . . . 4 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
27145, 90, 252, 257, 270letrd 10484 . . 3 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))
27245, 21, 72absdifled 14514 . . 3 (𝜑 → ((abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))) ≤ 𝐸 ↔ (((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − 𝐸) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + 𝐸))))
273251, 271, 272mpbir2and 705 . 2 (𝜑 → (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))) ≤ 𝐸)
27460, 273eqbrtrd 4865 1 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) ≤ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3089  csb 3728  wss 3769  {cpr 4370   class class class wbr 4843  cmpt 4922  cfv 6101  (class class class)co 6878  cc 10222  cr 10223  0cc0 10224  1c1 10225   + caddc 10227   · cmul 10229  +∞cpnf 10360  *cxr 10362  cle 10364  cmin 10556  -cneg 10557  cz 11666  cuz 11930  (,)cioo 12424  ...cfz 12580  cfl 12846  abscabs 14315  Σcsu 14757   D cdv 23968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-fi 8559  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-q 12034  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-ioo 12428  df-ico 12430  df-icc 12431  df-fz 12581  df-fzo 12721  df-fl 12848  df-seq 13056  df-exp 13115  df-hash 13371  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-clim 14560  df-sum 14758  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-starv 16282  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-unif 16290  df-hom 16291  df-cco 16292  df-rest 16398  df-topn 16399  df-0g 16417  df-gsum 16418  df-topgen 16419  df-pt 16420  df-prds 16423  df-xrs 16477  df-qtop 16482  df-imas 16483  df-xps 16485  df-mre 16561  df-mrc 16562  df-acs 16564  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-mulg 17857  df-cntz 18062  df-cmn 18510  df-psmet 20060  df-xmet 20061  df-met 20062  df-bl 20063  df-mopn 20064  df-fbas 20065  df-fg 20066  df-cnfld 20069  df-top 21027  df-topon 21044  df-topsp 21066  df-bases 21079  df-cld 21152  df-ntr 21153  df-cls 21154  df-nei 21231  df-lp 21269  df-perf 21270  df-cn 21360  df-cnp 21361  df-haus 21448  df-cmp 21519  df-tx 21694  df-hmeo 21887  df-fil 21978  df-fm 22070  df-flim 22071  df-flf 22072  df-xms 22453  df-ms 22454  df-tms 22455  df-cncf 23009  df-limc 23971  df-dv 23972
This theorem is referenced by:  logfacbnd3  25300  log2sumbnd  25585
  Copyright terms: Public domain W3C validator