Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blockadjliftmap Structured version   Visualization version   GIF version

Theorem blockadjliftmap 38482
Description: A "two-stage" construction is obtained by first forming the block relation (𝑅 E ) and then adjoining elements as "BlockAdj". Combined, it uses the relation ((𝑅 E ) ∪ E ). (Contributed by Peter Mazsa, 28-Jan-2026.)
Assertion
Ref Expression
blockadjliftmap ((𝑅 E ) AdjLiftMap 𝐴) = {⟨𝑚, 𝑛⟩ ∣ (𝑚 ∈ (𝐴 ∖ {∅}) ∧ 𝑛 = (𝑚 ∪ ([𝑚]𝑅 × 𝑚)))}
Distinct variable groups:   𝐴,𝑚,𝑛   𝑅,𝑚,𝑛

Proof of Theorem blockadjliftmap
StepHypRef Expression
1 df-adjliftmap 38480 . 2 ((𝑅 E ) AdjLiftMap 𝐴) = (𝑚 ∈ dom (((𝑅 E ) ∪ E ) ↾ 𝐴) ↦ [𝑚](((𝑅 E ) ∪ E ) ↾ 𝐴))
2 df-mpt 5171 . 2 (𝑚 ∈ dom (((𝑅 E ) ∪ E ) ↾ 𝐴) ↦ [𝑚](((𝑅 E ) ∪ E ) ↾ 𝐴)) = {⟨𝑚, 𝑛⟩ ∣ (𝑚 ∈ dom (((𝑅 E ) ∪ E ) ↾ 𝐴) ∧ 𝑛 = [𝑚](((𝑅 E ) ∪ E ) ↾ 𝐴))}
3 dmxrnuncnvepres 38426 . . . . . 6 dom (((𝑅 E ) ∪ E ) ↾ 𝐴) = (𝐴 ∖ {∅})
43eleq2i 2823 . . . . 5 (𝑚 ∈ dom (((𝑅 E ) ∪ E ) ↾ 𝐴) ↔ 𝑚 ∈ (𝐴 ∖ {∅}))
54anbi1i 624 . . . 4 ((𝑚 ∈ dom (((𝑅 E ) ∪ E ) ↾ 𝐴) ∧ 𝑛 = [𝑚](((𝑅 E ) ∪ E ) ↾ 𝐴)) ↔ (𝑚 ∈ (𝐴 ∖ {∅}) ∧ 𝑛 = [𝑚](((𝑅 E ) ∪ E ) ↾ 𝐴)))
6 eldifi 4078 . . . . . . . 8 (𝑚 ∈ (𝐴 ∖ {∅}) → 𝑚𝐴)
7 ecuncnvepres 38429 . . . . . . . 8 (𝑚𝐴 → [𝑚](((𝑅 E ) ∪ E ) ↾ 𝐴) = (𝑚 ∪ [𝑚](𝑅 E )))
86, 7syl 17 . . . . . . 7 (𝑚 ∈ (𝐴 ∖ {∅}) → [𝑚](((𝑅 E ) ∪ E ) ↾ 𝐴) = (𝑚 ∪ [𝑚](𝑅 E )))
9 ecxrncnvep2 38444 . . . . . . . . 9 (𝑚 ∈ V → [𝑚](𝑅 E ) = ([𝑚]𝑅 × 𝑚))
109elv 3441 . . . . . . . 8 [𝑚](𝑅 E ) = ([𝑚]𝑅 × 𝑚)
1110uneq2i 4112 . . . . . . 7 (𝑚 ∪ [𝑚](𝑅 E )) = (𝑚 ∪ ([𝑚]𝑅 × 𝑚))
128, 11eqtrdi 2782 . . . . . 6 (𝑚 ∈ (𝐴 ∖ {∅}) → [𝑚](((𝑅 E ) ∪ E ) ↾ 𝐴) = (𝑚 ∪ ([𝑚]𝑅 × 𝑚)))
1312eqeq2d 2742 . . . . 5 (𝑚 ∈ (𝐴 ∖ {∅}) → (𝑛 = [𝑚](((𝑅 E ) ∪ E ) ↾ 𝐴) ↔ 𝑛 = (𝑚 ∪ ([𝑚]𝑅 × 𝑚))))
1413pm5.32i 574 . . . 4 ((𝑚 ∈ (𝐴 ∖ {∅}) ∧ 𝑛 = [𝑚](((𝑅 E ) ∪ E ) ↾ 𝐴)) ↔ (𝑚 ∈ (𝐴 ∖ {∅}) ∧ 𝑛 = (𝑚 ∪ ([𝑚]𝑅 × 𝑚))))
155, 14bitri 275 . . 3 ((𝑚 ∈ dom (((𝑅 E ) ∪ E ) ↾ 𝐴) ∧ 𝑛 = [𝑚](((𝑅 E ) ∪ E ) ↾ 𝐴)) ↔ (𝑚 ∈ (𝐴 ∖ {∅}) ∧ 𝑛 = (𝑚 ∪ ([𝑚]𝑅 × 𝑚))))
1615opabbii 5156 . 2 {⟨𝑚, 𝑛⟩ ∣ (𝑚 ∈ dom (((𝑅 E ) ∪ E ) ↾ 𝐴) ∧ 𝑛 = [𝑚](((𝑅 E ) ∪ E ) ↾ 𝐴))} = {⟨𝑚, 𝑛⟩ ∣ (𝑚 ∈ (𝐴 ∖ {∅}) ∧ 𝑛 = (𝑚 ∪ ([𝑚]𝑅 × 𝑚)))}
171, 2, 163eqtri 2758 1 ((𝑅 E ) AdjLiftMap 𝐴) = {⟨𝑚, 𝑛⟩ ∣ (𝑚 ∈ (𝐴 ∖ {∅}) ∧ 𝑛 = (𝑚 ∪ ([𝑚]𝑅 × 𝑚)))}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  cun 3895  c0 4280  {csn 4573  {copab 5151  cmpt 5170   E cep 5513   × cxp 5612  ccnv 5613  dom cdm 5614  cres 5616  [cec 8620  cxrn 38224   AdjLiftMap cadjliftmap 38225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-oprab 7350  df-1st 7921  df-2nd 7922  df-ec 8624  df-xrn 38414  df-adjliftmap 38480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator