| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcnsrec | Structured version Visualization version GIF version | ||
| Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 11033 and mulcnsrec 11035. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addcnsrec | ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcnsr 11026 | . 2 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉) = 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉) | |
| 2 | opex 5402 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 3 | 2 | ecid 8704 | . . 3 ⊢ [〈𝐴, 𝐵〉]◡ E = 〈𝐴, 𝐵〉 |
| 4 | opex 5402 | . . . 4 ⊢ 〈𝐶, 𝐷〉 ∈ V | |
| 5 | 4 | ecid 8704 | . . 3 ⊢ [〈𝐶, 𝐷〉]◡ E = 〈𝐶, 𝐷〉 |
| 6 | 3, 5 | oveq12i 7358 | . 2 ⊢ ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = (〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉) |
| 7 | opex 5402 | . . 3 ⊢ 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉 ∈ V | |
| 8 | 7 | ecid 8704 | . 2 ⊢ [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E = 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉 |
| 9 | 1, 6, 8 | 3eqtr4g 2791 | 1 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4579 E cep 5513 ◡ccnv 5613 (class class class)co 7346 [cec 8620 Rcnr 10756 +R cplr 10760 + caddc 11009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-ec 8624 df-c 11012 df-add 11017 |
| This theorem is referenced by: axaddass 11047 axdistr 11049 |
| Copyright terms: Public domain | W3C validator |