MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcnsrec Structured version   Visualization version   GIF version

Theorem addcnsrec 11140
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 11139 and mulcnsrec 11141. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcnsrec (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E + [⟨𝐶, 𝐷⟩] E ) = [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩] E )

Proof of Theorem addcnsrec
StepHypRef Expression
1 addcnsr 11132 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
2 opex 5457 . . . 4 𝐴, 𝐵⟩ ∈ V
32ecid 8778 . . 3 [⟨𝐴, 𝐵⟩] E = ⟨𝐴, 𝐵
4 opex 5457 . . . 4 𝐶, 𝐷⟩ ∈ V
54ecid 8778 . . 3 [⟨𝐶, 𝐷⟩] E = ⟨𝐶, 𝐷
63, 5oveq12i 7417 . 2 ([⟨𝐴, 𝐵⟩] E + [⟨𝐶, 𝐷⟩] E ) = (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)
7 opex 5457 . . 3 ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ ∈ V
87ecid 8778 . 2 [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩] E = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩
91, 6, 83eqtr4g 2791 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E + [⟨𝐶, 𝐷⟩] E ) = [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩] E )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cop 4629   E cep 5572  ccnv 5668  (class class class)co 7405  [cec 8703  Rcnr 10862   +R cplr 10866   + caddc 11115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-eprel 5573  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fv 6545  df-ov 7408  df-oprab 7409  df-ec 8707  df-c 11118  df-add 11123
This theorem is referenced by:  axaddass  11153  axdistr  11155
  Copyright terms: Public domain W3C validator