MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcnsrec Structured version   Visualization version   GIF version

Theorem addcnsrec 11034
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 11033 and mulcnsrec 11035. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcnsrec (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E + [⟨𝐶, 𝐷⟩] E ) = [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩] E )

Proof of Theorem addcnsrec
StepHypRef Expression
1 addcnsr 11026 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
2 opex 5402 . . . 4 𝐴, 𝐵⟩ ∈ V
32ecid 8704 . . 3 [⟨𝐴, 𝐵⟩] E = ⟨𝐴, 𝐵
4 opex 5402 . . . 4 𝐶, 𝐷⟩ ∈ V
54ecid 8704 . . 3 [⟨𝐶, 𝐷⟩] E = ⟨𝐶, 𝐷
63, 5oveq12i 7358 . 2 ([⟨𝐴, 𝐵⟩] E + [⟨𝐶, 𝐷⟩] E ) = (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)
7 opex 5402 . . 3 ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ ∈ V
87ecid 8704 . 2 [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩] E = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩
91, 6, 83eqtr4g 2791 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E + [⟨𝐶, 𝐷⟩] E ) = [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩] E )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4579   E cep 5513  ccnv 5613  (class class class)co 7346  [cec 8620  Rcnr 10756   +R cplr 10760   + caddc 11009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-ec 8624  df-c 11012  df-add 11017
This theorem is referenced by:  axaddass  11047  axdistr  11049
  Copyright terms: Public domain W3C validator