![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcnsrec | Structured version Visualization version GIF version |
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 11136 and mulcnsrec 11138. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcnsrec | ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([⟨𝐴, 𝐵⟩]◡ E + [⟨𝐶, 𝐷⟩]◡ E ) = [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩]◡ E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcnsr 11129 | . 2 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩) | |
2 | opex 5464 | . . . 4 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
3 | 2 | ecid 8775 | . . 3 ⊢ [⟨𝐴, 𝐵⟩]◡ E = ⟨𝐴, 𝐵⟩ |
4 | opex 5464 | . . . 4 ⊢ ⟨𝐶, 𝐷⟩ ∈ V | |
5 | 4 | ecid 8775 | . . 3 ⊢ [⟨𝐶, 𝐷⟩]◡ E = ⟨𝐶, 𝐷⟩ |
6 | 3, 5 | oveq12i 7420 | . 2 ⊢ ([⟨𝐴, 𝐵⟩]◡ E + [⟨𝐶, 𝐷⟩]◡ E ) = (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) |
7 | opex 5464 | . . 3 ⊢ ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ ∈ V | |
8 | 7 | ecid 8775 | . 2 ⊢ [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩]◡ E = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ |
9 | 1, 6, 8 | 3eqtr4g 2797 | 1 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([⟨𝐴, 𝐵⟩]◡ E + [⟨𝐶, 𝐷⟩]◡ E ) = [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩]◡ E ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⟨cop 4634 E cep 5579 ◡ccnv 5675 (class class class)co 7408 [cec 8700 Rcnr 10859 +R cplr 10863 + caddc 11112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-ec 8704 df-c 11115 df-add 11120 |
This theorem is referenced by: axaddass 11150 axdistr 11152 |
Copyright terms: Public domain | W3C validator |