![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcnsrec | Structured version Visualization version GIF version |
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 10251 and mulcnsrec 10253. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcnsrec | ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcnsr 10244 | . 2 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉) = 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉) | |
2 | opex 5123 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | ecid 8050 | . . 3 ⊢ [〈𝐴, 𝐵〉]◡ E = 〈𝐴, 𝐵〉 |
4 | opex 5123 | . . . 4 ⊢ 〈𝐶, 𝐷〉 ∈ V | |
5 | 4 | ecid 8050 | . . 3 ⊢ [〈𝐶, 𝐷〉]◡ E = 〈𝐶, 𝐷〉 |
6 | 3, 5 | oveq12i 6890 | . 2 ⊢ ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = (〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉) |
7 | opex 5123 | . . 3 ⊢ 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉 ∈ V | |
8 | 7 | ecid 8050 | . 2 ⊢ [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E = 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉 |
9 | 1, 6, 8 | 3eqtr4g 2858 | 1 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 〈cop 4374 E cep 5224 ◡ccnv 5311 (class class class)co 6878 [cec 7980 Rcnr 9975 +R cplr 9979 + caddc 10227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-id 5220 df-eprel 5225 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fv 6109 df-ov 6881 df-oprab 6882 df-ec 7984 df-c 10230 df-add 10235 |
This theorem is referenced by: axaddass 10265 axdistr 10267 |
Copyright terms: Public domain | W3C validator |