![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcnsrec | Structured version Visualization version GIF version |
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 11139 and mulcnsrec 11141. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcnsrec | ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([⟨𝐴, 𝐵⟩]◡ E + [⟨𝐶, 𝐷⟩]◡ E ) = [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩]◡ E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcnsr 11132 | . 2 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩) | |
2 | opex 5457 | . . . 4 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
3 | 2 | ecid 8778 | . . 3 ⊢ [⟨𝐴, 𝐵⟩]◡ E = ⟨𝐴, 𝐵⟩ |
4 | opex 5457 | . . . 4 ⊢ ⟨𝐶, 𝐷⟩ ∈ V | |
5 | 4 | ecid 8778 | . . 3 ⊢ [⟨𝐶, 𝐷⟩]◡ E = ⟨𝐶, 𝐷⟩ |
6 | 3, 5 | oveq12i 7417 | . 2 ⊢ ([⟨𝐴, 𝐵⟩]◡ E + [⟨𝐶, 𝐷⟩]◡ E ) = (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) |
7 | opex 5457 | . . 3 ⊢ ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ ∈ V | |
8 | 7 | ecid 8778 | . 2 ⊢ [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩]◡ E = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ |
9 | 1, 6, 8 | 3eqtr4g 2791 | 1 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([⟨𝐴, 𝐵⟩]◡ E + [⟨𝐶, 𝐷⟩]◡ E ) = [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩]◡ E ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⟨cop 4629 E cep 5572 ◡ccnv 5668 (class class class)co 7405 [cec 8703 Rcnr 10862 +R cplr 10866 + caddc 11115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-eprel 5573 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fv 6545 df-ov 7408 df-oprab 7409 df-ec 8707 df-c 11118 df-add 11123 |
This theorem is referenced by: axaddass 11153 axdistr 11155 |
Copyright terms: Public domain | W3C validator |