MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcnsrec Structured version   Visualization version   GIF version

Theorem addcnsrec 10252
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 10251 and mulcnsrec 10253. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcnsrec (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E + [⟨𝐶, 𝐷⟩] E ) = [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩] E )

Proof of Theorem addcnsrec
StepHypRef Expression
1 addcnsr 10244 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
2 opex 5123 . . . 4 𝐴, 𝐵⟩ ∈ V
32ecid 8050 . . 3 [⟨𝐴, 𝐵⟩] E = ⟨𝐴, 𝐵
4 opex 5123 . . . 4 𝐶, 𝐷⟩ ∈ V
54ecid 8050 . . 3 [⟨𝐶, 𝐷⟩] E = ⟨𝐶, 𝐷
63, 5oveq12i 6890 . 2 ([⟨𝐴, 𝐵⟩] E + [⟨𝐶, 𝐷⟩] E ) = (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩)
7 opex 5123 . . 3 ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ ∈ V
87ecid 8050 . 2 [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩] E = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩
91, 6, 83eqtr4g 2858 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E + [⟨𝐶, 𝐷⟩] E ) = [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩] E )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  cop 4374   E cep 5224  ccnv 5311  (class class class)co 6878  [cec 7980  Rcnr 9975   +R cplr 9979   + caddc 10227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-id 5220  df-eprel 5225  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fv 6109  df-ov 6881  df-oprab 6882  df-ec 7984  df-c 10230  df-add 10235
This theorem is referenced by:  axaddass  10265  axdistr  10267
  Copyright terms: Public domain W3C validator