MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqglact Structured version   Visualization version   GIF version

Theorem eqglact 19219
Description: A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
eqglact.3 + = (+g𝐺)
Assertion
Ref Expression
eqglact ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌))
Distinct variable groups:   𝑥, +   𝑥,   𝑥,𝐺   𝑥,𝑋   𝑥,𝐴   𝑥,𝑌

Proof of Theorem eqglact
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eqger.x . . . . . . 7 𝑋 = (Base‘𝐺)
2 eqid 2740 . . . . . . 7 (invg𝐺) = (invg𝐺)
3 eqglact.3 . . . . . . 7 + = (+g𝐺)
4 eqger.r . . . . . . 7 = (𝐺 ~QG 𝑌)
51, 2, 3, 4eqgval 19217 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐴 𝑥 ↔ (𝐴𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)))
6 3anass 1095 . . . . . 6 ((𝐴𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌) ↔ (𝐴𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)))
75, 6bitrdi 287 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐴 𝑥 ↔ (𝐴𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌))))
87baibd 539 . . . 4 (((𝐺 ∈ Grp ∧ 𝑌𝑋) ∧ 𝐴𝑋) → (𝐴 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)))
983impa 1110 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → (𝐴 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)))
109abbidv 2811 . 2 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → {𝑥𝐴 𝑥} = {𝑥 ∣ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)})
11 dfec2 8766 . . 3 (𝐴𝑋 → [𝐴] = {𝑥𝐴 𝑥})
12113ad2ant3 1135 . 2 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → [𝐴] = {𝑥𝐴 𝑥})
13 eqid 2740 . . . . . . . . 9 (𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥))) = (𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))
1413, 1, 3, 2grplactcnv 19083 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴))))
1514simprd 495 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)))
1613, 1grplactfval 19081 . . . . . . . . 9 (𝐴𝑋 → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
1716adantl 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
1817cnveqd 5900 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
191, 2grpinvcl 19027 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
2013, 1grplactfval 19081 . . . . . . . 8 (((invg𝐺)‘𝐴) ∈ 𝑋 → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2119, 20syl 17 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2215, 18, 213eqtr3d 2788 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (𝐴 + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2322cnveqd 5900 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (𝐴 + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
24233adant2 1131 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → (𝑥𝑋 ↦ (𝐴 + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2524imaeq1d 6088 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) = ((𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) “ 𝑌))
26 imacnvcnv 6237 . . 3 ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) = ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌)
27 eqid 2740 . . . . 5 (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥))
2827mptpreima 6269 . . . 4 ((𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) “ 𝑌) = {𝑥𝑋 ∣ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌}
29 df-rab 3444 . . . 4 {𝑥𝑋 ∣ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌} = {𝑥 ∣ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)}
3028, 29eqtri 2768 . . 3 ((𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) “ 𝑌) = {𝑥 ∣ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)}
3125, 26, 303eqtr3g 2803 . 2 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) = {𝑥 ∣ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)})
3210, 12, 313eqtr4d 2790 1 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  {crab 3443  wss 3976   class class class wbr 5166  cmpt 5249  ccnv 5699  cima 5703  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  [cec 8761  Basecbs 17258  +gcplusg 17311  Grpcgrp 18973  invgcminusg 18974   ~QG cqg 19162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-ec 8765  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-eqg 19165
This theorem is referenced by:  eqgen  19221  pzriprnglem10  21524  cldsubg  24140  tgpconncompeqg  24141  snclseqg  24145  ellcsrspsn  35609
  Copyright terms: Public domain W3C validator