MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqglact Structured version   Visualization version   GIF version

Theorem eqglact 19091
Description: A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
eqglact.3 + = (+g𝐺)
Assertion
Ref Expression
eqglact ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌))
Distinct variable groups:   𝑥, +   𝑥,   𝑥,𝐺   𝑥,𝑋   𝑥,𝐴   𝑥,𝑌

Proof of Theorem eqglact
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eqger.x . . . . . . 7 𝑋 = (Base‘𝐺)
2 eqid 2724 . . . . . . 7 (invg𝐺) = (invg𝐺)
3 eqglact.3 . . . . . . 7 + = (+g𝐺)
4 eqger.r . . . . . . 7 = (𝐺 ~QG 𝑌)
51, 2, 3, 4eqgval 19089 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐴 𝑥 ↔ (𝐴𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)))
6 3anass 1092 . . . . . 6 ((𝐴𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌) ↔ (𝐴𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)))
75, 6bitrdi 287 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐴 𝑥 ↔ (𝐴𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌))))
87baibd 539 . . . 4 (((𝐺 ∈ Grp ∧ 𝑌𝑋) ∧ 𝐴𝑋) → (𝐴 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)))
983impa 1107 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → (𝐴 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)))
109abbidv 2793 . 2 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → {𝑥𝐴 𝑥} = {𝑥 ∣ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)})
11 dfec2 8701 . . 3 (𝐴𝑋 → [𝐴] = {𝑥𝐴 𝑥})
12113ad2ant3 1132 . 2 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → [𝐴] = {𝑥𝐴 𝑥})
13 eqid 2724 . . . . . . . . 9 (𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥))) = (𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))
1413, 1, 3, 2grplactcnv 18958 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴))))
1514simprd 495 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)))
1613, 1grplactfval 18956 . . . . . . . . 9 (𝐴𝑋 → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
1716adantl 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
1817cnveqd 5865 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
191, 2grpinvcl 18904 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
2013, 1grplactfval 18956 . . . . . . . 8 (((invg𝐺)‘𝐴) ∈ 𝑋 → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2119, 20syl 17 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2215, 18, 213eqtr3d 2772 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (𝐴 + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2322cnveqd 5865 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (𝐴 + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
24233adant2 1128 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → (𝑥𝑋 ↦ (𝐴 + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2524imaeq1d 6048 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) = ((𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) “ 𝑌))
26 imacnvcnv 6195 . . 3 ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) = ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌)
27 eqid 2724 . . . . 5 (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥))
2827mptpreima 6227 . . . 4 ((𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) “ 𝑌) = {𝑥𝑋 ∣ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌}
29 df-rab 3425 . . . 4 {𝑥𝑋 ∣ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌} = {𝑥 ∣ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)}
3028, 29eqtri 2752 . . 3 ((𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) “ 𝑌) = {𝑥 ∣ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)}
3125, 26, 303eqtr3g 2787 . 2 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) = {𝑥 ∣ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)})
3210, 12, 313eqtr4d 2774 1 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  {cab 2701  {crab 3424  wss 3940   class class class wbr 5138  cmpt 5221  ccnv 5665  cima 5669  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401  [cec 8696  Basecbs 17140  +gcplusg 17193  Grpcgrp 18850  invgcminusg 18851   ~QG cqg 19034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-ec 8700  df-0g 17383  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-grp 18853  df-minusg 18854  df-eqg 19037
This theorem is referenced by:  eqgen  19093  pzriprnglem10  21340  cldsubg  23925  tgpconncompeqg  23926  snclseqg  23930
  Copyright terms: Public domain W3C validator