Step | Hyp | Ref
| Expression |
1 | | eqger.x |
. . . . . . 7
⊢ 𝑋 = (Base‘𝐺) |
2 | | eqid 2740 |
. . . . . . 7
⊢
(invg‘𝐺) = (invg‘𝐺) |
3 | | eqglact.3 |
. . . . . . 7
⊢ + =
(+g‘𝐺) |
4 | | eqger.r |
. . . . . . 7
⊢ ∼ =
(𝐺 ~QG
𝑌) |
5 | 1, 2, 3, 4 | eqgval 18803 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → (𝐴 ∼ 𝑥 ↔ (𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌))) |
6 | | 3anass 1094 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌) ↔ (𝐴 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌))) |
7 | 5, 6 | bitrdi 287 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → (𝐴 ∼ 𝑥 ↔ (𝐴 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌)))) |
8 | 7 | baibd 540 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌))) |
9 | 8 | 3impa 1109 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌))) |
10 | 9 | abbidv 2809 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → {𝑥 ∣ 𝐴 ∼ 𝑥} = {𝑥 ∣ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌)}) |
11 | | dfec2 8484 |
. . 3
⊢ (𝐴 ∈ 𝑋 → [𝐴] ∼ = {𝑥 ∣ 𝐴 ∼ 𝑥}) |
12 | 11 | 3ad2ant3 1134 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = {𝑥 ∣ 𝐴 ∼ 𝑥}) |
13 | | eqid 2740 |
. . . . . . . . 9
⊢ (𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥))) = (𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥))) |
14 | 13, 1, 3, 2 | grplactcnv 18676 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴):𝑋–1-1-onto→𝑋 ∧ ◡((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘((invg‘𝐺)‘𝐴)))) |
15 | 14 | simprd 496 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ◡((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘((invg‘𝐺)‘𝐴))) |
16 | 13, 1 | grplactfval 18674 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑋 → ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥))) |
17 | 16 | adantl 482 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥))) |
18 | 17 | cnveqd 5783 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ◡((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ◡(𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥))) |
19 | 1, 2 | grpinvcl 18625 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
20 | 13, 1 | grplactfval 18674 |
. . . . . . . 8
⊢
(((invg‘𝐺)‘𝐴) ∈ 𝑋 → ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘((invg‘𝐺)‘𝐴)) = (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥))) |
21 | 19, 20 | syl 17 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘((invg‘𝐺)‘𝐴)) = (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥))) |
22 | 15, 18, 21 | 3eqtr3d 2788 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ◡(𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) = (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥))) |
23 | 22 | cnveqd 5783 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ◡◡(𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) = ◡(𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥))) |
24 | 23 | 3adant2 1130 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → ◡◡(𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) = ◡(𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥))) |
25 | 24 | imaeq1d 5967 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → (◡◡(𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) = (◡(𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥)) “ 𝑌)) |
26 | | imacnvcnv 6108 |
. . 3
⊢ (◡◡(𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) = ((𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) |
27 | | eqid 2740 |
. . . . 5
⊢ (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥)) = (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥)) |
28 | 27 | mptpreima 6140 |
. . . 4
⊢ (◡(𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥)) “ 𝑌) = {𝑥 ∈ 𝑋 ∣ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌} |
29 | | df-rab 3075 |
. . . 4
⊢ {𝑥 ∈ 𝑋 ∣ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌} = {𝑥 ∣ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌)} |
30 | 28, 29 | eqtri 2768 |
. . 3
⊢ (◡(𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥)) “ 𝑌) = {𝑥 ∣ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌)} |
31 | 25, 26, 30 | 3eqtr3g 2803 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) = {𝑥 ∣ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌)}) |
32 | 10, 12, 31 | 3eqtr4d 2790 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ((𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌)) |