MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqglact Structured version   Visualization version   GIF version

Theorem eqglact 19197
Description: A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
eqglact.3 + = (+g𝐺)
Assertion
Ref Expression
eqglact ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌))
Distinct variable groups:   𝑥, +   𝑥,   𝑥,𝐺   𝑥,𝑋   𝑥,𝐴   𝑥,𝑌

Proof of Theorem eqglact
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eqger.x . . . . . . 7 𝑋 = (Base‘𝐺)
2 eqid 2737 . . . . . . 7 (invg𝐺) = (invg𝐺)
3 eqglact.3 . . . . . . 7 + = (+g𝐺)
4 eqger.r . . . . . . 7 = (𝐺 ~QG 𝑌)
51, 2, 3, 4eqgval 19195 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐴 𝑥 ↔ (𝐴𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)))
6 3anass 1095 . . . . . 6 ((𝐴𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌) ↔ (𝐴𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)))
75, 6bitrdi 287 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐴 𝑥 ↔ (𝐴𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌))))
87baibd 539 . . . 4 (((𝐺 ∈ Grp ∧ 𝑌𝑋) ∧ 𝐴𝑋) → (𝐴 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)))
983impa 1110 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → (𝐴 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)))
109abbidv 2808 . 2 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → {𝑥𝐴 𝑥} = {𝑥 ∣ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)})
11 dfec2 8748 . . 3 (𝐴𝑋 → [𝐴] = {𝑥𝐴 𝑥})
12113ad2ant3 1136 . 2 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → [𝐴] = {𝑥𝐴 𝑥})
13 eqid 2737 . . . . . . . . 9 (𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥))) = (𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))
1413, 1, 3, 2grplactcnv 19061 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴))))
1514simprd 495 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)))
1613, 1grplactfval 19059 . . . . . . . . 9 (𝐴𝑋 → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
1716adantl 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
1817cnveqd 5886 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥𝑋 ↦ (𝐴 + 𝑥)))
191, 2grpinvcl 19005 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
2013, 1grplactfval 19059 . . . . . . . 8 (((invg𝐺)‘𝐴) ∈ 𝑋 → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2119, 20syl 17 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑥𝑋 ↦ (𝑔 + 𝑥)))‘((invg𝐺)‘𝐴)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2215, 18, 213eqtr3d 2785 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (𝐴 + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2322cnveqd 5886 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑥𝑋 ↦ (𝐴 + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
24233adant2 1132 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → (𝑥𝑋 ↦ (𝐴 + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)))
2524imaeq1d 6077 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) = ((𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) “ 𝑌))
26 imacnvcnv 6226 . . 3 ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) = ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌)
27 eqid 2737 . . . . 5 (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) = (𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥))
2827mptpreima 6258 . . . 4 ((𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) “ 𝑌) = {𝑥𝑋 ∣ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌}
29 df-rab 3437 . . . 4 {𝑥𝑋 ∣ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌} = {𝑥 ∣ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)}
3028, 29eqtri 2765 . . 3 ((𝑥𝑋 ↦ (((invg𝐺)‘𝐴) + 𝑥)) “ 𝑌) = {𝑥 ∣ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)}
3125, 26, 303eqtr3g 2800 . 2 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) = {𝑥 ∣ (𝑥𝑋 ∧ (((invg𝐺)‘𝐴) + 𝑥) ∈ 𝑌)})
3210, 12, 313eqtr4d 2787 1 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  {crab 3436  wss 3951   class class class wbr 5143  cmpt 5225  ccnv 5684  cima 5688  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  [cec 8743  Basecbs 17247  +gcplusg 17297  Grpcgrp 18951  invgcminusg 18952   ~QG cqg 19140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-ec 8747  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-eqg 19143
This theorem is referenced by:  eqgen  19199  pzriprnglem10  21501  cldsubg  24119  tgpconncompeqg  24120  snclseqg  24124  ellcsrspsn  35646
  Copyright terms: Public domain W3C validator