MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpconncompeqg Structured version   Visualization version   GIF version

Theorem tgpconncompeqg 22717
Description: The connected component containing 𝐴 is the left coset of the identity component containing 𝐴. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
tgpconncomp.x 𝑋 = (Base‘𝐺)
tgpconncomp.z 0 = (0g𝐺)
tgpconncomp.j 𝐽 = (TopOpen‘𝐺)
tgpconncomp.s 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
tgpconncompeqg.r = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
tgpconncompeqg ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝐽   𝑥,𝐺   𝑥,𝑋
Allowed substitution hints:   (𝑥)   𝑆(𝑥)

Proof of Theorem tgpconncompeqg
Dummy variables 𝑦 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfec2 8275 . . . . 5 (𝐴𝑋 → [𝐴] = {𝑧𝐴 𝑧})
21adantl 485 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = {𝑧𝐴 𝑧})
3 tgpconncomp.s . . . . . . . . 9 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
4 ssrab2 4007 . . . . . . . . . 10 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋
5 sspwuni 4985 . . . . . . . . . 10 ({𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋)
64, 5mpbi 233 . . . . . . . . 9 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋
73, 6eqsstri 3949 . . . . . . . 8 𝑆𝑋
87a1i 11 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑆𝑋)
9 tgpconncomp.x . . . . . . . 8 𝑋 = (Base‘𝐺)
10 eqid 2798 . . . . . . . 8 (invg𝐺) = (invg𝐺)
11 eqid 2798 . . . . . . . 8 (+g𝐺) = (+g𝐺)
12 tgpconncompeqg.r . . . . . . . 8 = (𝐺 ~QG 𝑆)
139, 10, 11, 12eqgval 18321 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑆𝑋) → (𝐴 𝑧 ↔ (𝐴𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝑧) ∈ 𝑆)))
148, 13syldan 594 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴 𝑧 ↔ (𝐴𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝑧) ∈ 𝑆)))
15 simp2 1134 . . . . . 6 ((𝐴𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝑧) ∈ 𝑆) → 𝑧𝑋)
1614, 15syl6bi 256 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴 𝑧𝑧𝑋))
1716abssdv 3996 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → {𝑧𝐴 𝑧} ⊆ 𝑋)
182, 17eqsstrd 3953 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] 𝑋)
19 simpr 488 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐴𝑋)
20 tgpgrp 22683 . . . . . . 7 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
21 tgpconncomp.z . . . . . . . 8 0 = (0g𝐺)
229, 11, 21, 10grplinv 18144 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = 0 )
2320, 22sylan 583 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = 0 )
24 tgpconncomp.j . . . . . . . . 9 𝐽 = (TopOpen‘𝐺)
2524, 9tgptopon 22687 . . . . . . . 8 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
2625adantr 484 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
2720adantr 484 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
289, 21grpidcl 18123 . . . . . . . 8 (𝐺 ∈ Grp → 0𝑋)
2927, 28syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 0𝑋)
303conncompid 22036 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 0𝑋) → 0𝑆)
3126, 29, 30syl2anc 587 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 0𝑆)
3223, 31eqeltrd 2890 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) ∈ 𝑆)
339, 10, 11, 12eqgval 18321 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆𝑋) → (𝐴 𝐴 ↔ (𝐴𝑋𝐴𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐴) ∈ 𝑆)))
348, 33syldan 594 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴 𝐴 ↔ (𝐴𝑋𝐴𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐴) ∈ 𝑆)))
3519, 19, 32, 34mpbir3and 1339 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐴 𝐴)
36 elecg 8315 . . . . 5 ((𝐴𝑋𝐴𝑋) → (𝐴 ∈ [𝐴] 𝐴 𝐴))
3719, 19, 36syl2anc 587 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴 ∈ [𝐴] 𝐴 𝐴))
3835, 37mpbird 260 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐴 ∈ [𝐴] )
399, 12, 11eqglact 18323 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑆𝑋𝐴𝑋) → [𝐴] = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
407, 39mp3an2 1446 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → [𝐴] = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
4120, 40sylan 583 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
4241oveq2d 7151 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐽t [𝐴] ) = (𝐽t ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆)))
43 eqid 2798 . . . . 5 𝐽 = 𝐽
44 eqid 2798 . . . . . . 7 (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) = (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧))
4544, 9, 11, 24tgplacthmeo 22708 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽))
46 hmeocn 22365 . . . . . 6 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
4745, 46syl 17 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
48 toponuni 21519 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
4926, 48syl 17 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑋 = 𝐽)
507, 49sseqtrid 3967 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑆 𝐽)
513conncompconn 22037 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 0𝑋) → (𝐽t 𝑆) ∈ Conn)
5226, 29, 51syl2anc 587 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐽t 𝑆) ∈ Conn)
5343, 47, 50, 52connima 22030 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐽t ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆)) ∈ Conn)
5442, 53eqeltrd 2890 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐽t [𝐴] ) ∈ Conn)
55 eqid 2798 . . . 4 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
5655conncompss 22038 . . 3 (([𝐴] 𝑋𝐴 ∈ [𝐴] ∧ (𝐽t [𝐴] ) ∈ Conn) → [𝐴] {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
5718, 38, 54, 56syl3anc 1368 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
58 elpwi 4506 . . . . . 6 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
5944mptpreima 6059 . . . . . . . . . . 11 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) = {𝑧𝑋 ∣ (𝐴(+g𝐺)𝑧) ∈ 𝑦}
6059ssrab3 4008 . . . . . . . . . 10 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑋
6129adantr 484 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 0𝑋)
629, 11, 21grprid 18126 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
6320, 62sylan 583 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
6463adantr 484 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝐴(+g𝐺) 0 ) = 𝐴)
65 simprrl 780 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝐴𝑦)
6664, 65eqeltrd 2890 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝐴(+g𝐺) 0 ) ∈ 𝑦)
67 oveq2 7143 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝐴(+g𝐺)𝑧) = (𝐴(+g𝐺) 0 ))
6867eleq1d 2874 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝐴(+g𝐺)𝑧) ∈ 𝑦 ↔ (𝐴(+g𝐺) 0 ) ∈ 𝑦))
6968, 59elrab2 3631 . . . . . . . . . . 11 ( 0 ∈ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ↔ ( 0𝑋 ∧ (𝐴(+g𝐺) 0 ) ∈ 𝑦))
7061, 66, 69sylanbrc 586 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 0 ∈ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦))
71 hmeocnvcn 22366 . . . . . . . . . . . . 13 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
7245, 71syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
7372adantr 484 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
74 simprl 770 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑦𝑋)
7549adantr 484 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑋 = 𝐽)
7674, 75sseqtrd 3955 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑦 𝐽)
77 simprrr 781 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝐽t 𝑦) ∈ Conn)
7843, 73, 76, 77connima 22030 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝐽t ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦)) ∈ Conn)
793conncompss 22038 . . . . . . . . . 10 ((((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑋0 ∈ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ∧ (𝐽t ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦)) ∈ Conn) → ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑆)
8060, 70, 78, 79mp3an2i 1463 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑆)
81 eqid 2798 . . . . . . . . . . . . . . . 16 (𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧))) = (𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))
8281, 9, 11, 10grplactcnv 18194 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴) = ((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘((invg𝐺)‘𝐴))))
8320, 82sylan 583 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴) = ((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘((invg𝐺)‘𝐴))))
8483simpld 498 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴):𝑋1-1-onto𝑋)
8581, 9grplactfval 18192 . . . . . . . . . . . . . . 15 (𝐴𝑋 → ((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴) = (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)))
8685adantl 485 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴) = (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)))
87 f1oeq1 6579 . . . . . . . . . . . . . 14 (((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴) = (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) → (((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴):𝑋1-1-onto𝑋 ↔ (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋))
8886, 87syl 17 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴):𝑋1-1-onto𝑋 ↔ (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋))
8984, 88mpbid 235 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
9089adantr 484 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
91 f1ocnv 6602 . . . . . . . . . . 11 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋(𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
92 f1ofun 6592 . . . . . . . . . . 11 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋 → Fun (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)))
9390, 91, 923syl 18 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → Fun (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)))
94 f1odm 6594 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋 → dom (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) = 𝑋)
9590, 91, 943syl 18 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → dom (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) = 𝑋)
9674, 95sseqtrrd 3956 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑦 ⊆ dom (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)))
97 funimass3 6801 . . . . . . . . . 10 ((Fun (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∧ 𝑦 ⊆ dom (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧))) → (((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑆𝑦 ⊆ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆)))
9893, 96, 97syl2anc 587 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑆𝑦 ⊆ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆)))
9980, 98mpbid 235 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑦 ⊆ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
10041adantr 484 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → [𝐴] = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
101 imacnvcnv 6030 . . . . . . . . 9 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆) = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆)
102100, 101eqtr4di 2851 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → [𝐴] = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
10399, 102sseqtrrd 3956 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑦 ⊆ [𝐴] )
104103expr 460 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) → 𝑦 ⊆ [𝐴] ))
10558, 104sylan2 595 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → ((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) → 𝑦 ⊆ [𝐴] ))
106105ralrimiva 3149 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ∀𝑦 ∈ 𝒫 𝑋((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) → 𝑦 ⊆ [𝐴] ))
107 eleq2w 2873 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
108 oveq2 7143 . . . . . . 7 (𝑥 = 𝑦 → (𝐽t 𝑥) = (𝐽t 𝑦))
109108eleq1d 2874 . . . . . 6 (𝑥 = 𝑦 → ((𝐽t 𝑥) ∈ Conn ↔ (𝐽t 𝑦) ∈ Conn))
110107, 109anbi12d 633 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn) ↔ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)))
111110ralrab 3633 . . . 4 (∀𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}𝑦 ⊆ [𝐴] ↔ ∀𝑦 ∈ 𝒫 𝑋((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) → 𝑦 ⊆ [𝐴] ))
112106, 111sylibr 237 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}𝑦 ⊆ [𝐴] )
113 unissb 4832 . . 3 ( {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ [𝐴] ↔ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}𝑦 ⊆ [𝐴] )
114112, 113sylibr 237 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ [𝐴] )
11557, 114eqssd 3932 1 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {cab 2776  wral 3106  {crab 3110  wss 3881  𝒫 cpw 4497   cuni 4800   class class class wbr 5030  cmpt 5110  ccnv 5518  dom cdm 5519  cima 5522  Fun wfun 6318  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  [cec 8270  Basecbs 16475  +gcplusg 16557  t crest 16686  TopOpenctopn 16687  0gc0g 16705  Grpcgrp 18095  invgcminusg 18096   ~QG cqg 18267  TopOnctopon 21515   Cn ccn 21829  Conncconn 22016  Homeochmeo 22358  TopGrpctgp 22676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-oadd 8089  df-er 8272  df-ec 8274  df-map 8391  df-en 8493  df-fin 8496  df-fi 8859  df-rest 16688  df-0g 16707  df-topgen 16709  df-plusf 17843  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-eqg 18270  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-cn 21832  df-cnp 21833  df-conn 22017  df-tx 22167  df-hmeo 22360  df-tmd 22677  df-tgp 22678
This theorem is referenced by:  tgpconncomp  22718
  Copyright terms: Public domain W3C validator