MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpconncompeqg Structured version   Visualization version   GIF version

Theorem tgpconncompeqg 24032
Description: The connected component containing 𝐴 is the left coset of the identity component containing 𝐴. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
tgpconncomp.x 𝑋 = (Base‘𝐺)
tgpconncomp.z 0 = (0g𝐺)
tgpconncomp.j 𝐽 = (TopOpen‘𝐺)
tgpconncomp.s 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
tgpconncompeqg.r = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
tgpconncompeqg ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝐽   𝑥,𝐺   𝑥,𝑋
Allowed substitution hints:   (𝑥)   𝑆(𝑥)

Proof of Theorem tgpconncompeqg
Dummy variables 𝑦 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfec2 8651 . . . . 5 (𝐴𝑋 → [𝐴] = {𝑧𝐴 𝑧})
21adantl 481 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = {𝑧𝐴 𝑧})
3 tgpconncomp.s . . . . . . . . 9 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
4 ssrab2 4039 . . . . . . . . . 10 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋
5 sspwuni 5059 . . . . . . . . . 10 ({𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋)
64, 5mpbi 230 . . . . . . . . 9 {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋
73, 6eqsstri 3990 . . . . . . . 8 𝑆𝑋
87a1i 11 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑆𝑋)
9 tgpconncomp.x . . . . . . . 8 𝑋 = (Base‘𝐺)
10 eqid 2729 . . . . . . . 8 (invg𝐺) = (invg𝐺)
11 eqid 2729 . . . . . . . 8 (+g𝐺) = (+g𝐺)
12 tgpconncompeqg.r . . . . . . . 8 = (𝐺 ~QG 𝑆)
139, 10, 11, 12eqgval 19091 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑆𝑋) → (𝐴 𝑧 ↔ (𝐴𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝑧) ∈ 𝑆)))
148, 13syldan 591 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴 𝑧 ↔ (𝐴𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝑧) ∈ 𝑆)))
15 simp2 1137 . . . . . 6 ((𝐴𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝑧) ∈ 𝑆) → 𝑧𝑋)
1614, 15biimtrdi 253 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴 𝑧𝑧𝑋))
1716abssdv 4028 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → {𝑧𝐴 𝑧} ⊆ 𝑋)
182, 17eqsstrd 3978 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] 𝑋)
19 simpr 484 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐴𝑋)
20 tgpgrp 23998 . . . . . . 7 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
21 tgpconncomp.z . . . . . . . 8 0 = (0g𝐺)
229, 11, 21, 10grplinv 18903 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = 0 )
2320, 22sylan 580 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = 0 )
24 tgpconncomp.j . . . . . . . . 9 𝐽 = (TopOpen‘𝐺)
2524, 9tgptopon 24002 . . . . . . . 8 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
2625adantr 480 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
2720adantr 480 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
289, 21grpidcl 18879 . . . . . . . 8 (𝐺 ∈ Grp → 0𝑋)
2927, 28syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 0𝑋)
303conncompid 23351 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 0𝑋) → 0𝑆)
3126, 29, 30syl2anc 584 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 0𝑆)
3223, 31eqeltrd 2828 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) ∈ 𝑆)
339, 10, 11, 12eqgval 19091 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆𝑋) → (𝐴 𝐴 ↔ (𝐴𝑋𝐴𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐴) ∈ 𝑆)))
348, 33syldan 591 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴 𝐴 ↔ (𝐴𝑋𝐴𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐴) ∈ 𝑆)))
3519, 19, 32, 34mpbir3and 1343 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐴 𝐴)
36 elecg 8692 . . . . 5 ((𝐴𝑋𝐴𝑋) → (𝐴 ∈ [𝐴] 𝐴 𝐴))
3719, 19, 36syl2anc 584 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴 ∈ [𝐴] 𝐴 𝐴))
3835, 37mpbird 257 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝐴 ∈ [𝐴] )
399, 12, 11eqglact 19093 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑆𝑋𝐴𝑋) → [𝐴] = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
407, 39mp3an2 1451 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → [𝐴] = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
4120, 40sylan 580 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
4241oveq2d 7385 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐽t [𝐴] ) = (𝐽t ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆)))
43 eqid 2729 . . . . 5 𝐽 = 𝐽
44 eqid 2729 . . . . . . 7 (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) = (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧))
4544, 9, 11, 24tgplacthmeo 24023 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽))
46 hmeocn 23680 . . . . . 6 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
4745, 46syl 17 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
48 toponuni 22834 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
4926, 48syl 17 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑋 = 𝐽)
507, 49sseqtrid 3986 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → 𝑆 𝐽)
513conncompconn 23352 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 0𝑋) → (𝐽t 𝑆) ∈ Conn)
5226, 29, 51syl2anc 584 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐽t 𝑆) ∈ Conn)
5343, 47, 50, 52connima 23345 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐽t ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆)) ∈ Conn)
5442, 53eqeltrd 2828 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐽t [𝐴] ) ∈ Conn)
55 eqid 2729 . . . 4 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
5655conncompss 23353 . . 3 (([𝐴] 𝑋𝐴 ∈ [𝐴] ∧ (𝐽t [𝐴] ) ∈ Conn) → [𝐴] {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
5718, 38, 54, 56syl3anc 1373 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
58 elpwi 4566 . . . . . 6 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
5944mptpreima 6199 . . . . . . . . . . 11 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) = {𝑧𝑋 ∣ (𝐴(+g𝐺)𝑧) ∈ 𝑦}
6059ssrab3 4041 . . . . . . . . . 10 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑋
6129adantr 480 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 0𝑋)
629, 11, 21grprid 18882 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
6320, 62sylan 580 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝐴(+g𝐺) 0 ) = 𝐴)
6463adantr 480 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝐴(+g𝐺) 0 ) = 𝐴)
65 simprrl 780 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝐴𝑦)
6664, 65eqeltrd 2828 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝐴(+g𝐺) 0 ) ∈ 𝑦)
67 oveq2 7377 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝐴(+g𝐺)𝑧) = (𝐴(+g𝐺) 0 ))
6867eleq1d 2813 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝐴(+g𝐺)𝑧) ∈ 𝑦 ↔ (𝐴(+g𝐺) 0 ) ∈ 𝑦))
6968, 59elrab2 3659 . . . . . . . . . . 11 ( 0 ∈ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ↔ ( 0𝑋 ∧ (𝐴(+g𝐺) 0 ) ∈ 𝑦))
7061, 66, 69sylanbrc 583 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 0 ∈ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦))
71 hmeocnvcn 23681 . . . . . . . . . . . . 13 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽Homeo𝐽) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
7245, 71syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
7372adantr 480 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∈ (𝐽 Cn 𝐽))
74 simprl 770 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑦𝑋)
7549adantr 480 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑋 = 𝐽)
7674, 75sseqtrd 3980 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑦 𝐽)
77 simprrr 781 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝐽t 𝑦) ∈ Conn)
7843, 73, 76, 77connima 23345 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝐽t ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦)) ∈ Conn)
793conncompss 23353 . . . . . . . . . 10 ((((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑋0 ∈ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ∧ (𝐽t ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦)) ∈ Conn) → ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑆)
8060, 70, 78, 79mp3an2i 1468 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑆)
81 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧))) = (𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))
8281, 9, 11, 10grplactcnv 18957 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴) = ((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘((invg𝐺)‘𝐴))))
8320, 82sylan 580 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴):𝑋1-1-onto𝑋((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴) = ((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘((invg𝐺)‘𝐴))))
8483simpld 494 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴):𝑋1-1-onto𝑋)
8581, 9grplactfval 18955 . . . . . . . . . . . . . . 15 (𝐴𝑋 → ((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴) = (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)))
8685adantl 481 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴) = (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)))
8786f1oeq1d 6777 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (((𝑔𝑋 ↦ (𝑧𝑋 ↦ (𝑔(+g𝐺)𝑧)))‘𝐴):𝑋1-1-onto𝑋 ↔ (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋))
8884, 87mpbid 232 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
8988adantr 480 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
90 f1ocnv 6794 . . . . . . . . . . 11 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋(𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
91 f1ofun 6784 . . . . . . . . . . 11 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋 → Fun (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)))
9289, 90, 913syl 18 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → Fun (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)))
93 f1odm 6786 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)):𝑋1-1-onto𝑋 → dom (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) = 𝑋)
9489, 90, 933syl 18 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → dom (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) = 𝑋)
9574, 94sseqtrrd 3981 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑦 ⊆ dom (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)))
96 funimass3 7008 . . . . . . . . . 10 ((Fun (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) ∧ 𝑦 ⊆ dom (𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧))) → (((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑆𝑦 ⊆ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆)))
9792, 95, 96syl2anc 584 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → (((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑦) ⊆ 𝑆𝑦 ⊆ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆)))
9880, 97mpbid 232 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑦 ⊆ ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
9941adantr 480 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → [𝐴] = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
100 imacnvcnv 6167 . . . . . . . . 9 ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆) = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆)
10199, 100eqtr4di 2782 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → [𝐴] = ((𝑧𝑋 ↦ (𝐴(+g𝐺)𝑧)) “ 𝑆))
10298, 101sseqtrrd 3981 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ (𝑦𝑋 ∧ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn))) → 𝑦 ⊆ [𝐴] )
103102expr 456 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) → 𝑦 ⊆ [𝐴] ))
10458, 103sylan2 593 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → ((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) → 𝑦 ⊆ [𝐴] ))
105104ralrimiva 3125 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ∀𝑦 ∈ 𝒫 𝑋((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) → 𝑦 ⊆ [𝐴] ))
106 eleq2w 2812 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
107 oveq2 7377 . . . . . . 7 (𝑥 = 𝑦 → (𝐽t 𝑥) = (𝐽t 𝑦))
108107eleq1d 2813 . . . . . 6 (𝑥 = 𝑦 → ((𝐽t 𝑥) ∈ Conn ↔ (𝐽t 𝑦) ∈ Conn))
109106, 108anbi12d 632 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn) ↔ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)))
110109ralrab 3662 . . . 4 (∀𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}𝑦 ⊆ [𝐴] ↔ ∀𝑦 ∈ 𝒫 𝑋((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) → 𝑦 ⊆ [𝐴] ))
111105, 110sylibr 234 . . 3 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}𝑦 ⊆ [𝐴] )
112 unissb 4899 . . 3 ( {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ [𝐴] ↔ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}𝑦 ⊆ [𝐴] )
113111, 112sylibr 234 . 2 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ [𝐴] )
11457, 113eqssd 3961 1 ((𝐺 ∈ TopGrp ∧ 𝐴𝑋) → [𝐴] = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  {crab 3402  wss 3911  𝒫 cpw 4559   cuni 4867   class class class wbr 5102  cmpt 5183  ccnv 5630  dom cdm 5631  cima 5634  Fun wfun 6493  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  [cec 8646  Basecbs 17155  +gcplusg 17196  t crest 17359  TopOpenctopn 17360  0gc0g 17378  Grpcgrp 18847  invgcminusg 18848   ~QG cqg 19036  TopOnctopon 22830   Cn ccn 23144  Conncconn 23331  Homeochmeo 23673  TopGrpctgp 23991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-ec 8650  df-map 8778  df-en 8896  df-fin 8899  df-fi 9338  df-rest 17361  df-0g 17380  df-topgen 17382  df-plusf 18548  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-eqg 19039  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-cn 23147  df-cnp 23148  df-conn 23332  df-tx 23482  df-hmeo 23675  df-tmd 23992  df-tgp 23993
This theorem is referenced by:  tgpconncomp  24033
  Copyright terms: Public domain W3C validator