MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff12 Structured version   Visualization version   GIF version

Theorem dff12 6397
Description: Alternate definition of a one-to-one function. (Contributed by NM, 31-Dec-1996.)
Assertion
Ref Expression
dff12 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦))
Distinct variable group:   𝑥,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem dff12
StepHypRef Expression
1 df-f1 6187 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
2 funcnv2 6249 . . 3 (Fun 𝐹 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦)
32anbi2i 613 . 2 ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦))
41, 3bitri 267 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387  wal 1505  ∃*wmo 2542   class class class wbr 4923  ccnv 5399  Fun wfun 6176  wf 6178  1-1wf1 6179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pr 5180
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ral 3087  df-rab 3091  df-v 3411  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-br 4924  df-opab 4986  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-fun 6184  df-f1 6187
This theorem is referenced by:  dff13  6832  fseqenlem2  9237  s4f1o  14132  2ndcdisj  21758  usgrexmplef  26734  phpreu  34265
  Copyright terms: Public domain W3C validator