MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff12 Structured version   Visualization version   GIF version

Theorem dff12 6786
Description: Alternate definition of a one-to-one function. (Contributed by NM, 31-Dec-1996.)
Assertion
Ref Expression
dff12 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦))
Distinct variable group:   𝑥,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem dff12
StepHypRef Expression
1 df-f1 6548 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
2 funcnv2 6616 . . 3 (Fun 𝐹 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦)
32anbi2i 623 . 2 ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦))
41, 3bitri 274 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wal 1539  ∃*wmo 2532   class class class wbr 5148  ccnv 5675  Fun wfun 6537  wf 6539  1-1wf1 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-fun 6545  df-f1 6548
This theorem is referenced by:  dff13  7256  fseqenlem2  10022  s4f1o  14873  2ndcdisj  23180  usgrexmplef  28771  phpreu  36775
  Copyright terms: Public domain W3C validator