| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff12 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of a one-to-one function. (Contributed by NM, 31-Dec-1996.) |
| Ref | Expression |
|---|---|
| dff12 | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 6491 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 2 | funcnv2 6554 | . . 3 ⊢ (Fun ◡𝐹 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃*wmo 2531 class class class wbr 5095 ◡ccnv 5622 Fun wfun 6480 ⟶wf 6482 –1-1→wf1 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-fun 6488 df-f1 6491 |
| This theorem is referenced by: dff13 7195 fseqenlem2 9938 s4f1o 14843 2ndcdisj 23359 usgrexmplef 29222 phpreu 37586 sinnpoly 46879 |
| Copyright terms: Public domain | W3C validator |