MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrexmplef Structured version   Visualization version   GIF version

Theorem usgrexmplef 28783
Description: Lemma for usgrexmpl 28787. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
Hypotheses
Ref Expression
usgrexmplef.v 𝑉 = (0...4)
usgrexmplef.e 𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩
Assertion
Ref Expression
usgrexmplef 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
Distinct variable groups:   𝑒,𝐸   𝑒,𝑉

Proof of Theorem usgrexmplef
Dummy variables 𝑥 𝑦 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgrexmpldifpr 28782 . . 3 (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))
2 usgrexmplef.e . . 3 𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩
3 prex 5431 . . . 4 {0, 1} ∈ V
4 prex 5431 . . . 4 {1, 2} ∈ V
5 prex 5431 . . . 4 {2, 0} ∈ V
6 prex 5431 . . . 4 {0, 3} ∈ V
7 s4f1o 14873 . . . 4 ((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) → ((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) → (𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩ → 𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))))
83, 4, 5, 6, 7mp4an 689 . . 3 ((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) → (𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩ → 𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})))
91, 2, 8mp2 9 . 2 𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})
10 f1of1 6831 . 2 (𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝐸:dom 𝐸1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))
11 id 22 . . . . . . 7 (ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))
12 vex 3476 . . . . . . . . . . . 12 𝑝 ∈ V
1312elpr 4650 . . . . . . . . . . 11 (𝑝 ∈ {{0, 1}, {1, 2}} ↔ (𝑝 = {0, 1} ∨ 𝑝 = {1, 2}))
14 0nn0 12491 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
15 4nn0 12495 . . . . . . . . . . . . . . . 16 4 ∈ ℕ0
16 0re 11220 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
17 4re 12300 . . . . . . . . . . . . . . . . 17 4 ∈ ℝ
18 4pos 12323 . . . . . . . . . . . . . . . . 17 0 < 4
1916, 17, 18ltleii 11341 . . . . . . . . . . . . . . . 16 0 ≤ 4
20 elfz2nn0 13596 . . . . . . . . . . . . . . . 16 (0 ∈ (0...4) ↔ (0 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 0 ≤ 4))
2114, 15, 19, 20mpbir3an 1339 . . . . . . . . . . . . . . 15 0 ∈ (0...4)
22 usgrexmplef.v . . . . . . . . . . . . . . 15 𝑉 = (0...4)
2321, 22eleqtrri 2830 . . . . . . . . . . . . . 14 0 ∈ 𝑉
24 1nn0 12492 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
25 1re 11218 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
26 1lt4 12392 . . . . . . . . . . . . . . . . 17 1 < 4
2725, 17, 26ltleii 11341 . . . . . . . . . . . . . . . 16 1 ≤ 4
28 elfz2nn0 13596 . . . . . . . . . . . . . . . 16 (1 ∈ (0...4) ↔ (1 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 1 ≤ 4))
2924, 15, 27, 28mpbir3an 1339 . . . . . . . . . . . . . . 15 1 ∈ (0...4)
3029, 22eleqtrri 2830 . . . . . . . . . . . . . 14 1 ∈ 𝑉
31 prelpwi 5446 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → {0, 1} ∈ 𝒫 𝑉)
32 eleq1 2819 . . . . . . . . . . . . . . 15 (𝑝 = {0, 1} → (𝑝 ∈ 𝒫 𝑉 ↔ {0, 1} ∈ 𝒫 𝑉))
3331, 32syl5ibrcom 246 . . . . . . . . . . . . . 14 ((0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → (𝑝 = {0, 1} → 𝑝 ∈ 𝒫 𝑉))
3423, 30, 33mp2an 688 . . . . . . . . . . . . 13 (𝑝 = {0, 1} → 𝑝 ∈ 𝒫 𝑉)
35 fveq2 6890 . . . . . . . . . . . . . 14 (𝑝 = {0, 1} → (♯‘𝑝) = (♯‘{0, 1}))
36 prhash2ex 14363 . . . . . . . . . . . . . 14 (♯‘{0, 1}) = 2
3735, 36eqtrdi 2786 . . . . . . . . . . . . 13 (𝑝 = {0, 1} → (♯‘𝑝) = 2)
3834, 37jca 510 . . . . . . . . . . . 12 (𝑝 = {0, 1} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
39 2nn0 12493 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
40 2re 12290 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
41 2lt4 12391 . . . . . . . . . . . . . . . . 17 2 < 4
4240, 17, 41ltleii 11341 . . . . . . . . . . . . . . . 16 2 ≤ 4
43 elfz2nn0 13596 . . . . . . . . . . . . . . . 16 (2 ∈ (0...4) ↔ (2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4))
4439, 15, 42, 43mpbir3an 1339 . . . . . . . . . . . . . . 15 2 ∈ (0...4)
4544, 22eleqtrri 2830 . . . . . . . . . . . . . 14 2 ∈ 𝑉
46 prelpwi 5446 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑉 ∧ 2 ∈ 𝑉) → {1, 2} ∈ 𝒫 𝑉)
47 eleq1 2819 . . . . . . . . . . . . . . 15 (𝑝 = {1, 2} → (𝑝 ∈ 𝒫 𝑉 ↔ {1, 2} ∈ 𝒫 𝑉))
4846, 47syl5ibrcom 246 . . . . . . . . . . . . . 14 ((1 ∈ 𝑉 ∧ 2 ∈ 𝑉) → (𝑝 = {1, 2} → 𝑝 ∈ 𝒫 𝑉))
4930, 45, 48mp2an 688 . . . . . . . . . . . . 13 (𝑝 = {1, 2} → 𝑝 ∈ 𝒫 𝑉)
50 fveq2 6890 . . . . . . . . . . . . . 14 (𝑝 = {1, 2} → (♯‘𝑝) = (♯‘{1, 2}))
51 1ne2 12424 . . . . . . . . . . . . . . 15 1 ≠ 2
52 1nn 12227 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
53 2nn 12289 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
54 hashprg 14359 . . . . . . . . . . . . . . . 16 ((1 ∈ ℕ ∧ 2 ∈ ℕ) → (1 ≠ 2 ↔ (♯‘{1, 2}) = 2))
5552, 53, 54mp2an 688 . . . . . . . . . . . . . . 15 (1 ≠ 2 ↔ (♯‘{1, 2}) = 2)
5651, 55mpbi 229 . . . . . . . . . . . . . 14 (♯‘{1, 2}) = 2
5750, 56eqtrdi 2786 . . . . . . . . . . . . 13 (𝑝 = {1, 2} → (♯‘𝑝) = 2)
5849, 57jca 510 . . . . . . . . . . . 12 (𝑝 = {1, 2} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
5938, 58jaoi 853 . . . . . . . . . . 11 ((𝑝 = {0, 1} ∨ 𝑝 = {1, 2}) → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
6013, 59sylbi 216 . . . . . . . . . 10 (𝑝 ∈ {{0, 1}, {1, 2}} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
6112elpr 4650 . . . . . . . . . . 11 (𝑝 ∈ {{2, 0}, {0, 3}} ↔ (𝑝 = {2, 0} ∨ 𝑝 = {0, 3}))
62 prelpwi 5446 . . . . . . . . . . . . . . 15 ((2 ∈ 𝑉 ∧ 0 ∈ 𝑉) → {2, 0} ∈ 𝒫 𝑉)
63 eleq1 2819 . . . . . . . . . . . . . . 15 (𝑝 = {2, 0} → (𝑝 ∈ 𝒫 𝑉 ↔ {2, 0} ∈ 𝒫 𝑉))
6462, 63syl5ibrcom 246 . . . . . . . . . . . . . 14 ((2 ∈ 𝑉 ∧ 0 ∈ 𝑉) → (𝑝 = {2, 0} → 𝑝 ∈ 𝒫 𝑉))
6545, 23, 64mp2an 688 . . . . . . . . . . . . 13 (𝑝 = {2, 0} → 𝑝 ∈ 𝒫 𝑉)
66 fveq2 6890 . . . . . . . . . . . . . 14 (𝑝 = {2, 0} → (♯‘𝑝) = (♯‘{2, 0}))
67 2ne0 12320 . . . . . . . . . . . . . . 15 2 ≠ 0
68 2z 12598 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
69 0z 12573 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
70 hashprg 14359 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 0 ∈ ℤ) → (2 ≠ 0 ↔ (♯‘{2, 0}) = 2))
7168, 69, 70mp2an 688 . . . . . . . . . . . . . . 15 (2 ≠ 0 ↔ (♯‘{2, 0}) = 2)
7267, 71mpbi 229 . . . . . . . . . . . . . 14 (♯‘{2, 0}) = 2
7366, 72eqtrdi 2786 . . . . . . . . . . . . 13 (𝑝 = {2, 0} → (♯‘𝑝) = 2)
7465, 73jca 510 . . . . . . . . . . . 12 (𝑝 = {2, 0} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
75 3nn0 12494 . . . . . . . . . . . . . . . 16 3 ∈ ℕ0
76 3re 12296 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
77 3lt4 12390 . . . . . . . . . . . . . . . . 17 3 < 4
7876, 17, 77ltleii 11341 . . . . . . . . . . . . . . . 16 3 ≤ 4
79 elfz2nn0 13596 . . . . . . . . . . . . . . . 16 (3 ∈ (0...4) ↔ (3 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 3 ≤ 4))
8075, 15, 78, 79mpbir3an 1339 . . . . . . . . . . . . . . 15 3 ∈ (0...4)
8180, 22eleqtrri 2830 . . . . . . . . . . . . . 14 3 ∈ 𝑉
82 prelpwi 5446 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑉 ∧ 3 ∈ 𝑉) → {0, 3} ∈ 𝒫 𝑉)
83 eleq1 2819 . . . . . . . . . . . . . . 15 (𝑝 = {0, 3} → (𝑝 ∈ 𝒫 𝑉 ↔ {0, 3} ∈ 𝒫 𝑉))
8482, 83syl5ibrcom 246 . . . . . . . . . . . . . 14 ((0 ∈ 𝑉 ∧ 3 ∈ 𝑉) → (𝑝 = {0, 3} → 𝑝 ∈ 𝒫 𝑉))
8523, 81, 84mp2an 688 . . . . . . . . . . . . 13 (𝑝 = {0, 3} → 𝑝 ∈ 𝒫 𝑉)
86 fveq2 6890 . . . . . . . . . . . . . 14 (𝑝 = {0, 3} → (♯‘𝑝) = (♯‘{0, 3}))
87 3ne0 12322 . . . . . . . . . . . . . . . 16 3 ≠ 0
8887necomi 2993 . . . . . . . . . . . . . . 15 0 ≠ 3
89 3z 12599 . . . . . . . . . . . . . . . 16 3 ∈ ℤ
90 hashprg 14359 . . . . . . . . . . . . . . . 16 ((0 ∈ ℤ ∧ 3 ∈ ℤ) → (0 ≠ 3 ↔ (♯‘{0, 3}) = 2))
9169, 89, 90mp2an 688 . . . . . . . . . . . . . . 15 (0 ≠ 3 ↔ (♯‘{0, 3}) = 2)
9288, 91mpbi 229 . . . . . . . . . . . . . 14 (♯‘{0, 3}) = 2
9386, 92eqtrdi 2786 . . . . . . . . . . . . 13 (𝑝 = {0, 3} → (♯‘𝑝) = 2)
9485, 93jca 510 . . . . . . . . . . . 12 (𝑝 = {0, 3} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
9574, 94jaoi 853 . . . . . . . . . . 11 ((𝑝 = {2, 0} ∨ 𝑝 = {0, 3}) → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
9661, 95sylbi 216 . . . . . . . . . 10 (𝑝 ∈ {{2, 0}, {0, 3}} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
9760, 96jaoi 853 . . . . . . . . 9 ((𝑝 ∈ {{0, 1}, {1, 2}} ∨ 𝑝 ∈ {{2, 0}, {0, 3}}) → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
98 elun 4147 . . . . . . . . 9 (𝑝 ∈ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ↔ (𝑝 ∈ {{0, 1}, {1, 2}} ∨ 𝑝 ∈ {{2, 0}, {0, 3}}))
99 fveqeq2 6899 . . . . . . . . . 10 (𝑒 = 𝑝 → ((♯‘𝑒) = 2 ↔ (♯‘𝑝) = 2))
10099elrab 3682 . . . . . . . . 9 (𝑝 ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
10197, 98, 1003imtr4i 291 . . . . . . . 8 (𝑝 ∈ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝑝 ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
102101ssriv 3985 . . . . . . 7 ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
10311, 102sstrdi 3993 . . . . . 6 (ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → ran 𝐸 ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
104103anim2i 615 . . . . 5 ((𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})) → (𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}))
105 df-f 6546 . . . . 5 (𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ↔ (𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})))
106 df-f 6546 . . . . 5 (𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ (𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}))
107104, 105, 1063imtr4i 291 . . . 4 (𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
108107anim1i 613 . . 3 ((𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥) → (𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥))
109 dff12 6785 . . 3 (𝐸:dom 𝐸1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ↔ (𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥))
110 dff12 6785 . . 3 (𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ (𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥))
111108, 109, 1103imtr4i 291 . 2 (𝐸:dom 𝐸1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
1129, 10, 111mp2b 10 1 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 843  w3a 1085  wal 1537   = wceq 1539  wcel 2104  ∃*wmo 2530  wne 2938  {crab 3430  Vcvv 3472  cun 3945  wss 3947  𝒫 cpw 4601  {cpr 4629   class class class wbr 5147  dom cdm 5675  ran crn 5676   Fn wfn 6537  wf 6538  1-1wf1 6539  1-1-ontowf1o 6541  cfv 6542  (class class class)co 7411  0cc0 11112  1c1 11113  cle 11253  cn 12216  2c2 12271  3c3 12272  4c4 12273  0cn0 12476  cz 12562  ...cfz 13488  chash 14294  ⟨“cs4 14798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-hash 14295  df-word 14469  df-concat 14525  df-s1 14550  df-s2 14803  df-s3 14804  df-s4 14805
This theorem is referenced by:  usgrexmpl  28787
  Copyright terms: Public domain W3C validator