MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrexmplef Structured version   Visualization version   GIF version

Theorem usgrexmplef 26484
Description: Lemma for usgrexmpl 26488. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
Hypotheses
Ref Expression
usgrexmplef.v 𝑉 = (0...4)
usgrexmplef.e 𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩
Assertion
Ref Expression
usgrexmplef 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
Distinct variable groups:   𝑒,𝐸   𝑒,𝑉

Proof of Theorem usgrexmplef
Dummy variables 𝑥 𝑦 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgrexmpldifpr 26483 . . 3 (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))
2 usgrexmplef.e . . 3 𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩
3 prex 5098 . . . 4 {0, 1} ∈ V
4 prex 5098 . . . 4 {1, 2} ∈ V
5 prex 5098 . . . 4 {2, 0} ∈ V
6 prex 5098 . . . 4 {0, 3} ∈ V
7 s4f1o 13999 . . . 4 ((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) → ((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) → (𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩ → 𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))))
83, 4, 5, 6, 7mp4an 685 . . 3 ((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) → (𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩ → 𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})))
91, 2, 8mp2 9 . 2 𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})
10 f1of1 6353 . 2 (𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝐸:dom 𝐸1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))
11 id 22 . . . . . . 7 (ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))
12 vex 3386 . . . . . . . . . . . 12 𝑝 ∈ V
1312elpr 4389 . . . . . . . . . . 11 (𝑝 ∈ {{0, 1}, {1, 2}} ↔ (𝑝 = {0, 1} ∨ 𝑝 = {1, 2}))
14 0nn0 11593 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
15 4nn0 11597 . . . . . . . . . . . . . . . 16 4 ∈ ℕ0
16 0re 10328 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
17 4re 11394 . . . . . . . . . . . . . . . . 17 4 ∈ ℝ
18 4pos 11423 . . . . . . . . . . . . . . . . 17 0 < 4
1916, 17, 18ltleii 10448 . . . . . . . . . . . . . . . 16 0 ≤ 4
20 elfz2nn0 12681 . . . . . . . . . . . . . . . 16 (0 ∈ (0...4) ↔ (0 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 0 ≤ 4))
2114, 15, 19, 20mpbir3an 1442 . . . . . . . . . . . . . . 15 0 ∈ (0...4)
22 usgrexmplef.v . . . . . . . . . . . . . . 15 𝑉 = (0...4)
2321, 22eleqtrri 2875 . . . . . . . . . . . . . 14 0 ∈ 𝑉
24 1nn0 11594 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
25 1re 10326 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
26 1lt4 11492 . . . . . . . . . . . . . . . . 17 1 < 4
2725, 17, 26ltleii 10448 . . . . . . . . . . . . . . . 16 1 ≤ 4
28 elfz2nn0 12681 . . . . . . . . . . . . . . . 16 (1 ∈ (0...4) ↔ (1 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 1 ≤ 4))
2924, 15, 27, 28mpbir3an 1442 . . . . . . . . . . . . . . 15 1 ∈ (0...4)
3029, 22eleqtrri 2875 . . . . . . . . . . . . . 14 1 ∈ 𝑉
31 prelpwi 5104 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → {0, 1} ∈ 𝒫 𝑉)
32 eleq1 2864 . . . . . . . . . . . . . . 15 (𝑝 = {0, 1} → (𝑝 ∈ 𝒫 𝑉 ↔ {0, 1} ∈ 𝒫 𝑉))
3331, 32syl5ibrcom 239 . . . . . . . . . . . . . 14 ((0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → (𝑝 = {0, 1} → 𝑝 ∈ 𝒫 𝑉))
3423, 30, 33mp2an 684 . . . . . . . . . . . . 13 (𝑝 = {0, 1} → 𝑝 ∈ 𝒫 𝑉)
35 fveq2 6409 . . . . . . . . . . . . . 14 (𝑝 = {0, 1} → (♯‘𝑝) = (♯‘{0, 1}))
36 prhash2ex 13432 . . . . . . . . . . . . . 14 (♯‘{0, 1}) = 2
3735, 36syl6eq 2847 . . . . . . . . . . . . 13 (𝑝 = {0, 1} → (♯‘𝑝) = 2)
3834, 37jca 508 . . . . . . . . . . . 12 (𝑝 = {0, 1} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
39 2nn0 11595 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
40 2re 11383 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
41 2lt4 11491 . . . . . . . . . . . . . . . . 17 2 < 4
4240, 17, 41ltleii 10448 . . . . . . . . . . . . . . . 16 2 ≤ 4
43 elfz2nn0 12681 . . . . . . . . . . . . . . . 16 (2 ∈ (0...4) ↔ (2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4))
4439, 15, 42, 43mpbir3an 1442 . . . . . . . . . . . . . . 15 2 ∈ (0...4)
4544, 22eleqtrri 2875 . . . . . . . . . . . . . 14 2 ∈ 𝑉
46 prelpwi 5104 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑉 ∧ 2 ∈ 𝑉) → {1, 2} ∈ 𝒫 𝑉)
47 eleq1 2864 . . . . . . . . . . . . . . 15 (𝑝 = {1, 2} → (𝑝 ∈ 𝒫 𝑉 ↔ {1, 2} ∈ 𝒫 𝑉))
4846, 47syl5ibrcom 239 . . . . . . . . . . . . . 14 ((1 ∈ 𝑉 ∧ 2 ∈ 𝑉) → (𝑝 = {1, 2} → 𝑝 ∈ 𝒫 𝑉))
4930, 45, 48mp2an 684 . . . . . . . . . . . . 13 (𝑝 = {1, 2} → 𝑝 ∈ 𝒫 𝑉)
50 fveq2 6409 . . . . . . . . . . . . . 14 (𝑝 = {1, 2} → (♯‘𝑝) = (♯‘{1, 2}))
51 1ne2 11524 . . . . . . . . . . . . . . 15 1 ≠ 2
52 1nn 11323 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
53 2nn 11382 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
54 hashprg 13428 . . . . . . . . . . . . . . . 16 ((1 ∈ ℕ ∧ 2 ∈ ℕ) → (1 ≠ 2 ↔ (♯‘{1, 2}) = 2))
5552, 53, 54mp2an 684 . . . . . . . . . . . . . . 15 (1 ≠ 2 ↔ (♯‘{1, 2}) = 2)
5651, 55mpbi 222 . . . . . . . . . . . . . 14 (♯‘{1, 2}) = 2
5750, 56syl6eq 2847 . . . . . . . . . . . . 13 (𝑝 = {1, 2} → (♯‘𝑝) = 2)
5849, 57jca 508 . . . . . . . . . . . 12 (𝑝 = {1, 2} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
5938, 58jaoi 884 . . . . . . . . . . 11 ((𝑝 = {0, 1} ∨ 𝑝 = {1, 2}) → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
6013, 59sylbi 209 . . . . . . . . . 10 (𝑝 ∈ {{0, 1}, {1, 2}} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
6112elpr 4389 . . . . . . . . . . 11 (𝑝 ∈ {{2, 0}, {0, 3}} ↔ (𝑝 = {2, 0} ∨ 𝑝 = {0, 3}))
62 prelpwi 5104 . . . . . . . . . . . . . . 15 ((2 ∈ 𝑉 ∧ 0 ∈ 𝑉) → {2, 0} ∈ 𝒫 𝑉)
63 eleq1 2864 . . . . . . . . . . . . . . 15 (𝑝 = {2, 0} → (𝑝 ∈ 𝒫 𝑉 ↔ {2, 0} ∈ 𝒫 𝑉))
6462, 63syl5ibrcom 239 . . . . . . . . . . . . . 14 ((2 ∈ 𝑉 ∧ 0 ∈ 𝑉) → (𝑝 = {2, 0} → 𝑝 ∈ 𝒫 𝑉))
6545, 23, 64mp2an 684 . . . . . . . . . . . . 13 (𝑝 = {2, 0} → 𝑝 ∈ 𝒫 𝑉)
66 fveq2 6409 . . . . . . . . . . . . . 14 (𝑝 = {2, 0} → (♯‘𝑝) = (♯‘{2, 0}))
67 2ne0 11420 . . . . . . . . . . . . . . 15 2 ≠ 0
68 2z 11695 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
69 0z 11673 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
70 hashprg 13428 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 0 ∈ ℤ) → (2 ≠ 0 ↔ (♯‘{2, 0}) = 2))
7168, 69, 70mp2an 684 . . . . . . . . . . . . . . 15 (2 ≠ 0 ↔ (♯‘{2, 0}) = 2)
7267, 71mpbi 222 . . . . . . . . . . . . . 14 (♯‘{2, 0}) = 2
7366, 72syl6eq 2847 . . . . . . . . . . . . 13 (𝑝 = {2, 0} → (♯‘𝑝) = 2)
7465, 73jca 508 . . . . . . . . . . . 12 (𝑝 = {2, 0} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
75 3nn0 11596 . . . . . . . . . . . . . . . 16 3 ∈ ℕ0
76 3re 11389 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
77 3lt4 11490 . . . . . . . . . . . . . . . . 17 3 < 4
7876, 17, 77ltleii 10448 . . . . . . . . . . . . . . . 16 3 ≤ 4
79 elfz2nn0 12681 . . . . . . . . . . . . . . . 16 (3 ∈ (0...4) ↔ (3 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 3 ≤ 4))
8075, 15, 78, 79mpbir3an 1442 . . . . . . . . . . . . . . 15 3 ∈ (0...4)
8180, 22eleqtrri 2875 . . . . . . . . . . . . . 14 3 ∈ 𝑉
82 prelpwi 5104 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑉 ∧ 3 ∈ 𝑉) → {0, 3} ∈ 𝒫 𝑉)
83 eleq1 2864 . . . . . . . . . . . . . . 15 (𝑝 = {0, 3} → (𝑝 ∈ 𝒫 𝑉 ↔ {0, 3} ∈ 𝒫 𝑉))
8482, 83syl5ibrcom 239 . . . . . . . . . . . . . 14 ((0 ∈ 𝑉 ∧ 3 ∈ 𝑉) → (𝑝 = {0, 3} → 𝑝 ∈ 𝒫 𝑉))
8523, 81, 84mp2an 684 . . . . . . . . . . . . 13 (𝑝 = {0, 3} → 𝑝 ∈ 𝒫 𝑉)
86 fveq2 6409 . . . . . . . . . . . . . 14 (𝑝 = {0, 3} → (♯‘𝑝) = (♯‘{0, 3}))
87 3ne0 11422 . . . . . . . . . . . . . . . 16 3 ≠ 0
8887necomi 3023 . . . . . . . . . . . . . . 15 0 ≠ 3
89 3z 11696 . . . . . . . . . . . . . . . 16 3 ∈ ℤ
90 hashprg 13428 . . . . . . . . . . . . . . . 16 ((0 ∈ ℤ ∧ 3 ∈ ℤ) → (0 ≠ 3 ↔ (♯‘{0, 3}) = 2))
9169, 89, 90mp2an 684 . . . . . . . . . . . . . . 15 (0 ≠ 3 ↔ (♯‘{0, 3}) = 2)
9288, 91mpbi 222 . . . . . . . . . . . . . 14 (♯‘{0, 3}) = 2
9386, 92syl6eq 2847 . . . . . . . . . . . . 13 (𝑝 = {0, 3} → (♯‘𝑝) = 2)
9485, 93jca 508 . . . . . . . . . . . 12 (𝑝 = {0, 3} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
9574, 94jaoi 884 . . . . . . . . . . 11 ((𝑝 = {2, 0} ∨ 𝑝 = {0, 3}) → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
9661, 95sylbi 209 . . . . . . . . . 10 (𝑝 ∈ {{2, 0}, {0, 3}} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
9760, 96jaoi 884 . . . . . . . . 9 ((𝑝 ∈ {{0, 1}, {1, 2}} ∨ 𝑝 ∈ {{2, 0}, {0, 3}}) → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
98 elun 3949 . . . . . . . . 9 (𝑝 ∈ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ↔ (𝑝 ∈ {{0, 1}, {1, 2}} ∨ 𝑝 ∈ {{2, 0}, {0, 3}}))
99 fveqeq2 6418 . . . . . . . . . 10 (𝑒 = 𝑝 → ((♯‘𝑒) = 2 ↔ (♯‘𝑝) = 2))
10099elrab 3554 . . . . . . . . 9 (𝑝 ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
10197, 98, 1003imtr4i 284 . . . . . . . 8 (𝑝 ∈ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝑝 ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
102101ssriv 3800 . . . . . . 7 ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
10311, 102syl6ss 3808 . . . . . 6 (ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → ran 𝐸 ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
104103anim2i 611 . . . . 5 ((𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})) → (𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}))
105 df-f 6103 . . . . 5 (𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ↔ (𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})))
106 df-f 6103 . . . . 5 (𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ (𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}))
107104, 105, 1063imtr4i 284 . . . 4 (𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
108107anim1i 609 . . 3 ((𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥) → (𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥))
109 dff12 6313 . . 3 (𝐸:dom 𝐸1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ↔ (𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥))
110 dff12 6313 . . 3 (𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ (𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥))
111108, 109, 1103imtr4i 284 . 2 (𝐸:dom 𝐸1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
1129, 10, 111mp2b 10 1 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  wo 874  w3a 1108  wal 1651   = wceq 1653  wcel 2157  ∃*wmo 2588  wne 2969  {crab 3091  Vcvv 3383  cun 3765  wss 3767  𝒫 cpw 4347  {cpr 4368   class class class wbr 4841  dom cdm 5310  ran crn 5311   Fn wfn 6094  wf 6095  1-1wf1 6096  1-1-ontowf1o 6098  cfv 6099  (class class class)co 6876  0cc0 10222  1c1 10223  cle 10362  cn 11310  2c2 11364  3c3 11365  4c4 11366  0cn0 11576  cz 11662  ...cfz 12576  chash 13366  ⟨“cs4 13924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-card 9049  df-cda 9276  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-n0 11577  df-z 11663  df-uz 11927  df-fz 12577  df-fzo 12717  df-hash 13367  df-word 13531  df-concat 13587  df-s1 13612  df-s2 13929  df-s3 13930  df-s4 13931
This theorem is referenced by:  usgrexmpl  26488
  Copyright terms: Public domain W3C validator