Step | Hyp | Ref
| Expression |
1 | | usgrexmpldifpr 27528 |
. . 3
⊢ (({0, 1}
≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2}
≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0,
3})) |
2 | | usgrexmplef.e |
. . 3
⊢ 𝐸 = 〈“{0, 1} {1, 2}
{2, 0} {0, 3}”〉 |
3 | | prex 5350 |
. . . 4
⊢ {0, 1}
∈ V |
4 | | prex 5350 |
. . . 4
⊢ {1, 2}
∈ V |
5 | | prex 5350 |
. . . 4
⊢ {2, 0}
∈ V |
6 | | prex 5350 |
. . . 4
⊢ {0, 3}
∈ V |
7 | | s4f1o 14559 |
. . . 4
⊢ ((({0, 1}
∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V))
→ ((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3})
∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))
→ (𝐸 =
〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 → 𝐸:dom 𝐸–1-1-onto→({{0,
1}, {1, 2}} ∪ {{2, 0}, {0, 3}})))) |
8 | 3, 4, 5, 6, 7 | mp4an 689 |
. . 3
⊢ ((({0, 1}
≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2}
≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) → (𝐸 = 〈“{0, 1} {1, 2}
{2, 0} {0, 3}”〉 → 𝐸:dom 𝐸–1-1-onto→({{0,
1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))) |
9 | 1, 2, 8 | mp2 9 |
. 2
⊢ 𝐸:dom 𝐸–1-1-onto→({{0,
1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) |
10 | | f1of1 6699 |
. 2
⊢ (𝐸:dom 𝐸–1-1-onto→({{0,
1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝐸:dom 𝐸–1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0,
3}})) |
11 | | id 22 |
. . . . . . 7
⊢ (ran
𝐸 ⊆ ({{0, 1}, {1, 2}}
∪ {{2, 0}, {0, 3}}) → ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0},
{0, 3}})) |
12 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑝 ∈ V |
13 | 12 | elpr 4581 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ {{0, 1}, {1, 2}} ↔
(𝑝 = {0, 1} ∨ 𝑝 = {1, 2})) |
14 | | 0nn0 12178 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℕ0 |
15 | | 4nn0 12182 |
. . . . . . . . . . . . . . . 16
⊢ 4 ∈
ℕ0 |
16 | | 0re 10908 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ |
17 | | 4re 11987 |
. . . . . . . . . . . . . . . . 17
⊢ 4 ∈
ℝ |
18 | | 4pos 12010 |
. . . . . . . . . . . . . . . . 17
⊢ 0 <
4 |
19 | 16, 17, 18 | ltleii 11028 |
. . . . . . . . . . . . . . . 16
⊢ 0 ≤
4 |
20 | | elfz2nn0 13276 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
(0...4) ↔ (0 ∈ ℕ0 ∧ 4 ∈ ℕ0
∧ 0 ≤ 4)) |
21 | 14, 15, 19, 20 | mpbir3an 1339 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
(0...4) |
22 | | usgrexmplef.v |
. . . . . . . . . . . . . . 15
⊢ 𝑉 = (0...4) |
23 | 21, 22 | eleqtrri 2838 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
𝑉 |
24 | | 1nn0 12179 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℕ0 |
25 | | 1re 10906 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ |
26 | | 1lt4 12079 |
. . . . . . . . . . . . . . . . 17
⊢ 1 <
4 |
27 | 25, 17, 26 | ltleii 11028 |
. . . . . . . . . . . . . . . 16
⊢ 1 ≤
4 |
28 | | elfz2nn0 13276 |
. . . . . . . . . . . . . . . 16
⊢ (1 ∈
(0...4) ↔ (1 ∈ ℕ0 ∧ 4 ∈ ℕ0
∧ 1 ≤ 4)) |
29 | 24, 15, 27, 28 | mpbir3an 1339 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
(0...4) |
30 | 29, 22 | eleqtrri 2838 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
𝑉 |
31 | | prelpwi 5357 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ 𝑉 ∧ 1 ∈
𝑉) → {0, 1} ∈
𝒫 𝑉) |
32 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = {0, 1} → (𝑝 ∈ 𝒫 𝑉 ↔ {0, 1} ∈ 𝒫
𝑉)) |
33 | 31, 32 | syl5ibrcom 246 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ 𝑉 ∧ 1 ∈
𝑉) → (𝑝 = {0, 1} → 𝑝 ∈ 𝒫 𝑉)) |
34 | 23, 30, 33 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ (𝑝 = {0, 1} → 𝑝 ∈ 𝒫 𝑉) |
35 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = {0, 1} →
(♯‘𝑝) =
(♯‘{0, 1})) |
36 | | prhash2ex 14042 |
. . . . . . . . . . . . . 14
⊢
(♯‘{0, 1}) = 2 |
37 | 35, 36 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (𝑝 = {0, 1} →
(♯‘𝑝) =
2) |
38 | 34, 37 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝑝 = {0, 1} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2)) |
39 | | 2nn0 12180 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℕ0 |
40 | | 2re 11977 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℝ |
41 | | 2lt4 12078 |
. . . . . . . . . . . . . . . . 17
⊢ 2 <
4 |
42 | 40, 17, 41 | ltleii 11028 |
. . . . . . . . . . . . . . . 16
⊢ 2 ≤
4 |
43 | | elfz2nn0 13276 |
. . . . . . . . . . . . . . . 16
⊢ (2 ∈
(0...4) ↔ (2 ∈ ℕ0 ∧ 4 ∈ ℕ0
∧ 2 ≤ 4)) |
44 | 39, 15, 42, 43 | mpbir3an 1339 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
(0...4) |
45 | 44, 22 | eleqtrri 2838 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
𝑉 |
46 | | prelpwi 5357 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ 𝑉 ∧ 2 ∈
𝑉) → {1, 2} ∈
𝒫 𝑉) |
47 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = {1, 2} → (𝑝 ∈ 𝒫 𝑉 ↔ {1, 2} ∈ 𝒫
𝑉)) |
48 | 46, 47 | syl5ibrcom 246 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ 𝑉 ∧ 2 ∈
𝑉) → (𝑝 = {1, 2} → 𝑝 ∈ 𝒫 𝑉)) |
49 | 30, 45, 48 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ (𝑝 = {1, 2} → 𝑝 ∈ 𝒫 𝑉) |
50 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = {1, 2} →
(♯‘𝑝) =
(♯‘{1, 2})) |
51 | | 1ne2 12111 |
. . . . . . . . . . . . . . 15
⊢ 1 ≠
2 |
52 | | 1nn 11914 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℕ |
53 | | 2nn 11976 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℕ |
54 | | hashprg 14038 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℕ ∧ 2 ∈ ℕ) → (1 ≠ 2 ↔
(♯‘{1, 2}) = 2)) |
55 | 52, 53, 54 | mp2an 688 |
. . . . . . . . . . . . . . 15
⊢ (1 ≠ 2
↔ (♯‘{1, 2}) = 2) |
56 | 51, 55 | mpbi 229 |
. . . . . . . . . . . . . 14
⊢
(♯‘{1, 2}) = 2 |
57 | 50, 56 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (𝑝 = {1, 2} →
(♯‘𝑝) =
2) |
58 | 49, 57 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝑝 = {1, 2} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2)) |
59 | 38, 58 | jaoi 853 |
. . . . . . . . . . 11
⊢ ((𝑝 = {0, 1} ∨ 𝑝 = {1, 2}) → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2)) |
60 | 13, 59 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑝 ∈ {{0, 1}, {1, 2}} →
(𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2)) |
61 | 12 | elpr 4581 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ {{2, 0}, {0, 3}} ↔
(𝑝 = {2, 0} ∨ 𝑝 = {0, 3})) |
62 | | prelpwi 5357 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ 𝑉 ∧ 0 ∈
𝑉) → {2, 0} ∈
𝒫 𝑉) |
63 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = {2, 0} → (𝑝 ∈ 𝒫 𝑉 ↔ {2, 0} ∈ 𝒫
𝑉)) |
64 | 62, 63 | syl5ibrcom 246 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ 𝑉 ∧ 0 ∈
𝑉) → (𝑝 = {2, 0} → 𝑝 ∈ 𝒫 𝑉)) |
65 | 45, 23, 64 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ (𝑝 = {2, 0} → 𝑝 ∈ 𝒫 𝑉) |
66 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = {2, 0} →
(♯‘𝑝) =
(♯‘{2, 0})) |
67 | | 2ne0 12007 |
. . . . . . . . . . . . . . 15
⊢ 2 ≠
0 |
68 | | 2z 12282 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℤ |
69 | | 0z 12260 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℤ |
70 | | hashprg 14038 |
. . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℤ ∧ 0 ∈ ℤ) → (2 ≠ 0 ↔
(♯‘{2, 0}) = 2)) |
71 | 68, 69, 70 | mp2an 688 |
. . . . . . . . . . . . . . 15
⊢ (2 ≠ 0
↔ (♯‘{2, 0}) = 2) |
72 | 67, 71 | mpbi 229 |
. . . . . . . . . . . . . 14
⊢
(♯‘{2, 0}) = 2 |
73 | 66, 72 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (𝑝 = {2, 0} →
(♯‘𝑝) =
2) |
74 | 65, 73 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝑝 = {2, 0} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2)) |
75 | | 3nn0 12181 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℕ0 |
76 | | 3re 11983 |
. . . . . . . . . . . . . . . . 17
⊢ 3 ∈
ℝ |
77 | | 3lt4 12077 |
. . . . . . . . . . . . . . . . 17
⊢ 3 <
4 |
78 | 76, 17, 77 | ltleii 11028 |
. . . . . . . . . . . . . . . 16
⊢ 3 ≤
4 |
79 | | elfz2nn0 13276 |
. . . . . . . . . . . . . . . 16
⊢ (3 ∈
(0...4) ↔ (3 ∈ ℕ0 ∧ 4 ∈ ℕ0
∧ 3 ≤ 4)) |
80 | 75, 15, 78, 79 | mpbir3an 1339 |
. . . . . . . . . . . . . . 15
⊢ 3 ∈
(0...4) |
81 | 80, 22 | eleqtrri 2838 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
𝑉 |
82 | | prelpwi 5357 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ 𝑉 ∧ 3 ∈
𝑉) → {0, 3} ∈
𝒫 𝑉) |
83 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = {0, 3} → (𝑝 ∈ 𝒫 𝑉 ↔ {0, 3} ∈ 𝒫
𝑉)) |
84 | 82, 83 | syl5ibrcom 246 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ 𝑉 ∧ 3 ∈
𝑉) → (𝑝 = {0, 3} → 𝑝 ∈ 𝒫 𝑉)) |
85 | 23, 81, 84 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ (𝑝 = {0, 3} → 𝑝 ∈ 𝒫 𝑉) |
86 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = {0, 3} →
(♯‘𝑝) =
(♯‘{0, 3})) |
87 | | 3ne0 12009 |
. . . . . . . . . . . . . . . 16
⊢ 3 ≠
0 |
88 | 87 | necomi 2997 |
. . . . . . . . . . . . . . 15
⊢ 0 ≠
3 |
89 | | 3z 12283 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℤ |
90 | | hashprg 14038 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℤ ∧ 3 ∈ ℤ) → (0 ≠ 3 ↔
(♯‘{0, 3}) = 2)) |
91 | 69, 89, 90 | mp2an 688 |
. . . . . . . . . . . . . . 15
⊢ (0 ≠ 3
↔ (♯‘{0, 3}) = 2) |
92 | 88, 91 | mpbi 229 |
. . . . . . . . . . . . . 14
⊢
(♯‘{0, 3}) = 2 |
93 | 86, 92 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (𝑝 = {0, 3} →
(♯‘𝑝) =
2) |
94 | 85, 93 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝑝 = {0, 3} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2)) |
95 | 74, 94 | jaoi 853 |
. . . . . . . . . . 11
⊢ ((𝑝 = {2, 0} ∨ 𝑝 = {0, 3}) → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2)) |
96 | 61, 95 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑝 ∈ {{2, 0}, {0, 3}} →
(𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2)) |
97 | 60, 96 | jaoi 853 |
. . . . . . . . 9
⊢ ((𝑝 ∈ {{0, 1}, {1, 2}} ∨
𝑝 ∈ {{2, 0}, {0, 3}})
→ (𝑝 ∈ 𝒫
𝑉 ∧
(♯‘𝑝) =
2)) |
98 | | elun 4079 |
. . . . . . . . 9
⊢ (𝑝 ∈ ({{0, 1}, {1, 2}} ∪
{{2, 0}, {0, 3}}) ↔ (𝑝
∈ {{0, 1}, {1, 2}} ∨ 𝑝 ∈ {{2, 0}, {0, 3}})) |
99 | | fveqeq2 6765 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑝 → ((♯‘𝑒) = 2 ↔ (♯‘𝑝) = 2)) |
100 | 99 | elrab 3617 |
. . . . . . . . 9
⊢ (𝑝 ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2)) |
101 | 97, 98, 100 | 3imtr4i 291 |
. . . . . . . 8
⊢ (𝑝 ∈ ({{0, 1}, {1, 2}} ∪
{{2, 0}, {0, 3}}) → 𝑝
∈ {𝑒 ∈ 𝒫
𝑉 ∣
(♯‘𝑒) =
2}) |
102 | 101 | ssriv 3921 |
. . . . . . 7
⊢ ({{0, 1},
{1, 2}} ∪ {{2, 0}, {0, 3}}) ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} |
103 | 11, 102 | sstrdi 3929 |
. . . . . 6
⊢ (ran
𝐸 ⊆ ({{0, 1}, {1, 2}}
∪ {{2, 0}, {0, 3}}) → ran 𝐸 ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
104 | 103 | anim2i 616 |
. . . . 5
⊢ ((𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0},
{0, 3}})) → (𝐸 Fn dom
𝐸 ∧ ran 𝐸 ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})) |
105 | | df-f 6422 |
. . . . 5
⊢ (𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0,
3}}) ↔ (𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0},
{0, 3}}))) |
106 | | df-f 6422 |
. . . . 5
⊢ (𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ (𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})) |
107 | 104, 105,
106 | 3imtr4i 291 |
. . . 4
⊢ (𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0,
3}}) → 𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
108 | 107 | anim1i 614 |
. . 3
⊢ ((𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0,
3}}) ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥) → (𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥)) |
109 | | dff12 6653 |
. . 3
⊢ (𝐸:dom 𝐸–1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})
↔ (𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪
{{2, 0}, {0, 3}}) ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥)) |
110 | | dff12 6653 |
. . 3
⊢ (𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ (𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥)) |
111 | 108, 109,
110 | 3imtr4i 291 |
. 2
⊢ (𝐸:dom 𝐸–1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})
→ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
112 | 9, 10, 111 | mp2b 10 |
1
⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} |