MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrexmplef Structured version   Visualization version   GIF version

Theorem usgrexmplef 27201
Description: Lemma for usgrexmpl 27205. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
Hypotheses
Ref Expression
usgrexmplef.v 𝑉 = (0...4)
usgrexmplef.e 𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩
Assertion
Ref Expression
usgrexmplef 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
Distinct variable groups:   𝑒,𝐸   𝑒,𝑉

Proof of Theorem usgrexmplef
Dummy variables 𝑥 𝑦 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgrexmpldifpr 27200 . . 3 (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))
2 usgrexmplef.e . . 3 𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩
3 prex 5300 . . . 4 {0, 1} ∈ V
4 prex 5300 . . . 4 {1, 2} ∈ V
5 prex 5300 . . . 4 {2, 0} ∈ V
6 prex 5300 . . . 4 {0, 3} ∈ V
7 s4f1o 14370 . . . 4 ((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) → ((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) → (𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩ → 𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))))
83, 4, 5, 6, 7mp4an 693 . . 3 ((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) → (𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩ → 𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})))
91, 2, 8mp2 9 . 2 𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})
10 f1of1 6618 . 2 (𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝐸:dom 𝐸1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))
11 id 22 . . . . . . 7 (ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))
12 vex 3402 . . . . . . . . . . . 12 𝑝 ∈ V
1312elpr 4540 . . . . . . . . . . 11 (𝑝 ∈ {{0, 1}, {1, 2}} ↔ (𝑝 = {0, 1} ∨ 𝑝 = {1, 2}))
14 0nn0 11992 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
15 4nn0 11996 . . . . . . . . . . . . . . . 16 4 ∈ ℕ0
16 0re 10722 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
17 4re 11801 . . . . . . . . . . . . . . . . 17 4 ∈ ℝ
18 4pos 11824 . . . . . . . . . . . . . . . . 17 0 < 4
1916, 17, 18ltleii 10842 . . . . . . . . . . . . . . . 16 0 ≤ 4
20 elfz2nn0 13090 . . . . . . . . . . . . . . . 16 (0 ∈ (0...4) ↔ (0 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 0 ≤ 4))
2114, 15, 19, 20mpbir3an 1342 . . . . . . . . . . . . . . 15 0 ∈ (0...4)
22 usgrexmplef.v . . . . . . . . . . . . . . 15 𝑉 = (0...4)
2321, 22eleqtrri 2832 . . . . . . . . . . . . . 14 0 ∈ 𝑉
24 1nn0 11993 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
25 1re 10720 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
26 1lt4 11893 . . . . . . . . . . . . . . . . 17 1 < 4
2725, 17, 26ltleii 10842 . . . . . . . . . . . . . . . 16 1 ≤ 4
28 elfz2nn0 13090 . . . . . . . . . . . . . . . 16 (1 ∈ (0...4) ↔ (1 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 1 ≤ 4))
2924, 15, 27, 28mpbir3an 1342 . . . . . . . . . . . . . . 15 1 ∈ (0...4)
3029, 22eleqtrri 2832 . . . . . . . . . . . . . 14 1 ∈ 𝑉
31 prelpwi 5307 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → {0, 1} ∈ 𝒫 𝑉)
32 eleq1 2820 . . . . . . . . . . . . . . 15 (𝑝 = {0, 1} → (𝑝 ∈ 𝒫 𝑉 ↔ {0, 1} ∈ 𝒫 𝑉))
3331, 32syl5ibrcom 250 . . . . . . . . . . . . . 14 ((0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → (𝑝 = {0, 1} → 𝑝 ∈ 𝒫 𝑉))
3423, 30, 33mp2an 692 . . . . . . . . . . . . 13 (𝑝 = {0, 1} → 𝑝 ∈ 𝒫 𝑉)
35 fveq2 6675 . . . . . . . . . . . . . 14 (𝑝 = {0, 1} → (♯‘𝑝) = (♯‘{0, 1}))
36 prhash2ex 13853 . . . . . . . . . . . . . 14 (♯‘{0, 1}) = 2
3735, 36eqtrdi 2789 . . . . . . . . . . . . 13 (𝑝 = {0, 1} → (♯‘𝑝) = 2)
3834, 37jca 515 . . . . . . . . . . . 12 (𝑝 = {0, 1} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
39 2nn0 11994 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
40 2re 11791 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
41 2lt4 11892 . . . . . . . . . . . . . . . . 17 2 < 4
4240, 17, 41ltleii 10842 . . . . . . . . . . . . . . . 16 2 ≤ 4
43 elfz2nn0 13090 . . . . . . . . . . . . . . . 16 (2 ∈ (0...4) ↔ (2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4))
4439, 15, 42, 43mpbir3an 1342 . . . . . . . . . . . . . . 15 2 ∈ (0...4)
4544, 22eleqtrri 2832 . . . . . . . . . . . . . 14 2 ∈ 𝑉
46 prelpwi 5307 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑉 ∧ 2 ∈ 𝑉) → {1, 2} ∈ 𝒫 𝑉)
47 eleq1 2820 . . . . . . . . . . . . . . 15 (𝑝 = {1, 2} → (𝑝 ∈ 𝒫 𝑉 ↔ {1, 2} ∈ 𝒫 𝑉))
4846, 47syl5ibrcom 250 . . . . . . . . . . . . . 14 ((1 ∈ 𝑉 ∧ 2 ∈ 𝑉) → (𝑝 = {1, 2} → 𝑝 ∈ 𝒫 𝑉))
4930, 45, 48mp2an 692 . . . . . . . . . . . . 13 (𝑝 = {1, 2} → 𝑝 ∈ 𝒫 𝑉)
50 fveq2 6675 . . . . . . . . . . . . . 14 (𝑝 = {1, 2} → (♯‘𝑝) = (♯‘{1, 2}))
51 1ne2 11925 . . . . . . . . . . . . . . 15 1 ≠ 2
52 1nn 11728 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
53 2nn 11790 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
54 hashprg 13849 . . . . . . . . . . . . . . . 16 ((1 ∈ ℕ ∧ 2 ∈ ℕ) → (1 ≠ 2 ↔ (♯‘{1, 2}) = 2))
5552, 53, 54mp2an 692 . . . . . . . . . . . . . . 15 (1 ≠ 2 ↔ (♯‘{1, 2}) = 2)
5651, 55mpbi 233 . . . . . . . . . . . . . 14 (♯‘{1, 2}) = 2
5750, 56eqtrdi 2789 . . . . . . . . . . . . 13 (𝑝 = {1, 2} → (♯‘𝑝) = 2)
5849, 57jca 515 . . . . . . . . . . . 12 (𝑝 = {1, 2} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
5938, 58jaoi 856 . . . . . . . . . . 11 ((𝑝 = {0, 1} ∨ 𝑝 = {1, 2}) → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
6013, 59sylbi 220 . . . . . . . . . 10 (𝑝 ∈ {{0, 1}, {1, 2}} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
6112elpr 4540 . . . . . . . . . . 11 (𝑝 ∈ {{2, 0}, {0, 3}} ↔ (𝑝 = {2, 0} ∨ 𝑝 = {0, 3}))
62 prelpwi 5307 . . . . . . . . . . . . . . 15 ((2 ∈ 𝑉 ∧ 0 ∈ 𝑉) → {2, 0} ∈ 𝒫 𝑉)
63 eleq1 2820 . . . . . . . . . . . . . . 15 (𝑝 = {2, 0} → (𝑝 ∈ 𝒫 𝑉 ↔ {2, 0} ∈ 𝒫 𝑉))
6462, 63syl5ibrcom 250 . . . . . . . . . . . . . 14 ((2 ∈ 𝑉 ∧ 0 ∈ 𝑉) → (𝑝 = {2, 0} → 𝑝 ∈ 𝒫 𝑉))
6545, 23, 64mp2an 692 . . . . . . . . . . . . 13 (𝑝 = {2, 0} → 𝑝 ∈ 𝒫 𝑉)
66 fveq2 6675 . . . . . . . . . . . . . 14 (𝑝 = {2, 0} → (♯‘𝑝) = (♯‘{2, 0}))
67 2ne0 11821 . . . . . . . . . . . . . . 15 2 ≠ 0
68 2z 12096 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
69 0z 12074 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
70 hashprg 13849 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 0 ∈ ℤ) → (2 ≠ 0 ↔ (♯‘{2, 0}) = 2))
7168, 69, 70mp2an 692 . . . . . . . . . . . . . . 15 (2 ≠ 0 ↔ (♯‘{2, 0}) = 2)
7267, 71mpbi 233 . . . . . . . . . . . . . 14 (♯‘{2, 0}) = 2
7366, 72eqtrdi 2789 . . . . . . . . . . . . 13 (𝑝 = {2, 0} → (♯‘𝑝) = 2)
7465, 73jca 515 . . . . . . . . . . . 12 (𝑝 = {2, 0} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
75 3nn0 11995 . . . . . . . . . . . . . . . 16 3 ∈ ℕ0
76 3re 11797 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
77 3lt4 11891 . . . . . . . . . . . . . . . . 17 3 < 4
7876, 17, 77ltleii 10842 . . . . . . . . . . . . . . . 16 3 ≤ 4
79 elfz2nn0 13090 . . . . . . . . . . . . . . . 16 (3 ∈ (0...4) ↔ (3 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 3 ≤ 4))
8075, 15, 78, 79mpbir3an 1342 . . . . . . . . . . . . . . 15 3 ∈ (0...4)
8180, 22eleqtrri 2832 . . . . . . . . . . . . . 14 3 ∈ 𝑉
82 prelpwi 5307 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑉 ∧ 3 ∈ 𝑉) → {0, 3} ∈ 𝒫 𝑉)
83 eleq1 2820 . . . . . . . . . . . . . . 15 (𝑝 = {0, 3} → (𝑝 ∈ 𝒫 𝑉 ↔ {0, 3} ∈ 𝒫 𝑉))
8482, 83syl5ibrcom 250 . . . . . . . . . . . . . 14 ((0 ∈ 𝑉 ∧ 3 ∈ 𝑉) → (𝑝 = {0, 3} → 𝑝 ∈ 𝒫 𝑉))
8523, 81, 84mp2an 692 . . . . . . . . . . . . 13 (𝑝 = {0, 3} → 𝑝 ∈ 𝒫 𝑉)
86 fveq2 6675 . . . . . . . . . . . . . 14 (𝑝 = {0, 3} → (♯‘𝑝) = (♯‘{0, 3}))
87 3ne0 11823 . . . . . . . . . . . . . . . 16 3 ≠ 0
8887necomi 2988 . . . . . . . . . . . . . . 15 0 ≠ 3
89 3z 12097 . . . . . . . . . . . . . . . 16 3 ∈ ℤ
90 hashprg 13849 . . . . . . . . . . . . . . . 16 ((0 ∈ ℤ ∧ 3 ∈ ℤ) → (0 ≠ 3 ↔ (♯‘{0, 3}) = 2))
9169, 89, 90mp2an 692 . . . . . . . . . . . . . . 15 (0 ≠ 3 ↔ (♯‘{0, 3}) = 2)
9288, 91mpbi 233 . . . . . . . . . . . . . 14 (♯‘{0, 3}) = 2
9386, 92eqtrdi 2789 . . . . . . . . . . . . 13 (𝑝 = {0, 3} → (♯‘𝑝) = 2)
9485, 93jca 515 . . . . . . . . . . . 12 (𝑝 = {0, 3} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
9574, 94jaoi 856 . . . . . . . . . . 11 ((𝑝 = {2, 0} ∨ 𝑝 = {0, 3}) → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
9661, 95sylbi 220 . . . . . . . . . 10 (𝑝 ∈ {{2, 0}, {0, 3}} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
9760, 96jaoi 856 . . . . . . . . 9 ((𝑝 ∈ {{0, 1}, {1, 2}} ∨ 𝑝 ∈ {{2, 0}, {0, 3}}) → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
98 elun 4040 . . . . . . . . 9 (𝑝 ∈ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ↔ (𝑝 ∈ {{0, 1}, {1, 2}} ∨ 𝑝 ∈ {{2, 0}, {0, 3}}))
99 fveqeq2 6684 . . . . . . . . . 10 (𝑒 = 𝑝 → ((♯‘𝑒) = 2 ↔ (♯‘𝑝) = 2))
10099elrab 3588 . . . . . . . . 9 (𝑝 ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
10197, 98, 1003imtr4i 295 . . . . . . . 8 (𝑝 ∈ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝑝 ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
102101ssriv 3882 . . . . . . 7 ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
10311, 102sstrdi 3890 . . . . . 6 (ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → ran 𝐸 ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
104103anim2i 620 . . . . 5 ((𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})) → (𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}))
105 df-f 6344 . . . . 5 (𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ↔ (𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})))
106 df-f 6344 . . . . 5 (𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ (𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}))
107104, 105, 1063imtr4i 295 . . . 4 (𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
108107anim1i 618 . . 3 ((𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥) → (𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥))
109 dff12 6574 . . 3 (𝐸:dom 𝐸1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ↔ (𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥))
110 dff12 6574 . . 3 (𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ (𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥))
111108, 109, 1103imtr4i 295 . 2 (𝐸:dom 𝐸1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
1129, 10, 111mp2b 10 1 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 846  w3a 1088  wal 1540   = wceq 1542  wcel 2113  ∃*wmo 2538  wne 2934  {crab 3057  Vcvv 3398  cun 3842  wss 3844  𝒫 cpw 4489  {cpr 4519   class class class wbr 5031  dom cdm 5526  ran crn 5527   Fn wfn 6335  wf 6336  1-1wf1 6337  1-1-ontowf1o 6339  cfv 6340  (class class class)co 7171  0cc0 10616  1c1 10617  cle 10755  cn 11717  2c2 11772  3c3 11773  4c4 11774  0cn0 11977  cz 12063  ...cfz 12982  chash 13783  ⟨“cs4 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-om 7601  df-1st 7715  df-2nd 7716  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-1o 8132  df-oadd 8136  df-er 8321  df-en 8557  df-dom 8558  df-sdom 8559  df-fin 8560  df-dju 9404  df-card 9442  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-nn 11718  df-2 11780  df-3 11781  df-4 11782  df-n0 11978  df-z 12064  df-uz 12326  df-fz 12983  df-fzo 13126  df-hash 13784  df-word 13957  df-concat 14013  df-s1 14040  df-s2 14300  df-s3 14301  df-s4 14302
This theorem is referenced by:  usgrexmpl  27205
  Copyright terms: Public domain W3C validator