MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrexmplef Structured version   Visualization version   GIF version

Theorem usgrexmplef 29277
Description: Lemma for usgrexmpl 29281. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
Hypotheses
Ref Expression
usgrexmplef.v 𝑉 = (0...4)
usgrexmplef.e 𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩
Assertion
Ref Expression
usgrexmplef 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
Distinct variable groups:   𝑒,𝐸   𝑒,𝑉

Proof of Theorem usgrexmplef
Dummy variables 𝑥 𝑦 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgrexmpldifpr 29276 . . 3 (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))
2 usgrexmplef.e . . 3 𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩
3 prex 5436 . . . 4 {0, 1} ∈ V
4 prex 5436 . . . 4 {1, 2} ∈ V
5 prex 5436 . . . 4 {2, 0} ∈ V
6 prex 5436 . . . 4 {0, 3} ∈ V
7 s4f1o 14958 . . . 4 ((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) → ((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) → (𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩ → 𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))))
83, 4, 5, 6, 7mp4an 693 . . 3 ((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) → (𝐸 = ⟨“{0, 1} {1, 2} {2, 0} {0, 3}”⟩ → 𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})))
91, 2, 8mp2 9 . 2 𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})
10 f1of1 6846 . 2 (𝐸:dom 𝐸1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝐸:dom 𝐸1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))
11 id 22 . . . . . . 7 (ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))
12 vex 3483 . . . . . . . . . . . 12 𝑝 ∈ V
1312elpr 4649 . . . . . . . . . . 11 (𝑝 ∈ {{0, 1}, {1, 2}} ↔ (𝑝 = {0, 1} ∨ 𝑝 = {1, 2}))
14 0nn0 12543 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
15 4nn0 12547 . . . . . . . . . . . . . . . 16 4 ∈ ℕ0
16 0re 11264 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
17 4re 12351 . . . . . . . . . . . . . . . . 17 4 ∈ ℝ
18 4pos 12374 . . . . . . . . . . . . . . . . 17 0 < 4
1916, 17, 18ltleii 11385 . . . . . . . . . . . . . . . 16 0 ≤ 4
20 elfz2nn0 13659 . . . . . . . . . . . . . . . 16 (0 ∈ (0...4) ↔ (0 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 0 ≤ 4))
2114, 15, 19, 20mpbir3an 1341 . . . . . . . . . . . . . . 15 0 ∈ (0...4)
22 usgrexmplef.v . . . . . . . . . . . . . . 15 𝑉 = (0...4)
2321, 22eleqtrri 2839 . . . . . . . . . . . . . 14 0 ∈ 𝑉
24 1nn0 12544 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
25 1re 11262 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
26 1lt4 12443 . . . . . . . . . . . . . . . . 17 1 < 4
2725, 17, 26ltleii 11385 . . . . . . . . . . . . . . . 16 1 ≤ 4
28 elfz2nn0 13659 . . . . . . . . . . . . . . . 16 (1 ∈ (0...4) ↔ (1 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 1 ≤ 4))
2924, 15, 27, 28mpbir3an 1341 . . . . . . . . . . . . . . 15 1 ∈ (0...4)
3029, 22eleqtrri 2839 . . . . . . . . . . . . . 14 1 ∈ 𝑉
31 prelpwi 5451 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → {0, 1} ∈ 𝒫 𝑉)
32 eleq1 2828 . . . . . . . . . . . . . . 15 (𝑝 = {0, 1} → (𝑝 ∈ 𝒫 𝑉 ↔ {0, 1} ∈ 𝒫 𝑉))
3331, 32syl5ibrcom 247 . . . . . . . . . . . . . 14 ((0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → (𝑝 = {0, 1} → 𝑝 ∈ 𝒫 𝑉))
3423, 30, 33mp2an 692 . . . . . . . . . . . . 13 (𝑝 = {0, 1} → 𝑝 ∈ 𝒫 𝑉)
35 fveq2 6905 . . . . . . . . . . . . . 14 (𝑝 = {0, 1} → (♯‘𝑝) = (♯‘{0, 1}))
36 prhash2ex 14439 . . . . . . . . . . . . . 14 (♯‘{0, 1}) = 2
3735, 36eqtrdi 2792 . . . . . . . . . . . . 13 (𝑝 = {0, 1} → (♯‘𝑝) = 2)
3834, 37jca 511 . . . . . . . . . . . 12 (𝑝 = {0, 1} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
39 2nn0 12545 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
40 2re 12341 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
41 2lt4 12442 . . . . . . . . . . . . . . . . 17 2 < 4
4240, 17, 41ltleii 11385 . . . . . . . . . . . . . . . 16 2 ≤ 4
43 elfz2nn0 13659 . . . . . . . . . . . . . . . 16 (2 ∈ (0...4) ↔ (2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4))
4439, 15, 42, 43mpbir3an 1341 . . . . . . . . . . . . . . 15 2 ∈ (0...4)
4544, 22eleqtrri 2839 . . . . . . . . . . . . . 14 2 ∈ 𝑉
46 prelpwi 5451 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑉 ∧ 2 ∈ 𝑉) → {1, 2} ∈ 𝒫 𝑉)
47 eleq1 2828 . . . . . . . . . . . . . . 15 (𝑝 = {1, 2} → (𝑝 ∈ 𝒫 𝑉 ↔ {1, 2} ∈ 𝒫 𝑉))
4846, 47syl5ibrcom 247 . . . . . . . . . . . . . 14 ((1 ∈ 𝑉 ∧ 2 ∈ 𝑉) → (𝑝 = {1, 2} → 𝑝 ∈ 𝒫 𝑉))
4930, 45, 48mp2an 692 . . . . . . . . . . . . 13 (𝑝 = {1, 2} → 𝑝 ∈ 𝒫 𝑉)
50 fveq2 6905 . . . . . . . . . . . . . 14 (𝑝 = {1, 2} → (♯‘𝑝) = (♯‘{1, 2}))
51 1ne2 12475 . . . . . . . . . . . . . . 15 1 ≠ 2
52 1nn 12278 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
53 2nn 12340 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
54 hashprg 14435 . . . . . . . . . . . . . . . 16 ((1 ∈ ℕ ∧ 2 ∈ ℕ) → (1 ≠ 2 ↔ (♯‘{1, 2}) = 2))
5552, 53, 54mp2an 692 . . . . . . . . . . . . . . 15 (1 ≠ 2 ↔ (♯‘{1, 2}) = 2)
5651, 55mpbi 230 . . . . . . . . . . . . . 14 (♯‘{1, 2}) = 2
5750, 56eqtrdi 2792 . . . . . . . . . . . . 13 (𝑝 = {1, 2} → (♯‘𝑝) = 2)
5849, 57jca 511 . . . . . . . . . . . 12 (𝑝 = {1, 2} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
5938, 58jaoi 857 . . . . . . . . . . 11 ((𝑝 = {0, 1} ∨ 𝑝 = {1, 2}) → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
6013, 59sylbi 217 . . . . . . . . . 10 (𝑝 ∈ {{0, 1}, {1, 2}} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
6112elpr 4649 . . . . . . . . . . 11 (𝑝 ∈ {{2, 0}, {0, 3}} ↔ (𝑝 = {2, 0} ∨ 𝑝 = {0, 3}))
62 prelpwi 5451 . . . . . . . . . . . . . . 15 ((2 ∈ 𝑉 ∧ 0 ∈ 𝑉) → {2, 0} ∈ 𝒫 𝑉)
63 eleq1 2828 . . . . . . . . . . . . . . 15 (𝑝 = {2, 0} → (𝑝 ∈ 𝒫 𝑉 ↔ {2, 0} ∈ 𝒫 𝑉))
6462, 63syl5ibrcom 247 . . . . . . . . . . . . . 14 ((2 ∈ 𝑉 ∧ 0 ∈ 𝑉) → (𝑝 = {2, 0} → 𝑝 ∈ 𝒫 𝑉))
6545, 23, 64mp2an 692 . . . . . . . . . . . . 13 (𝑝 = {2, 0} → 𝑝 ∈ 𝒫 𝑉)
66 fveq2 6905 . . . . . . . . . . . . . 14 (𝑝 = {2, 0} → (♯‘𝑝) = (♯‘{2, 0}))
67 2ne0 12371 . . . . . . . . . . . . . . 15 2 ≠ 0
68 2z 12651 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
69 0z 12626 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
70 hashprg 14435 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 0 ∈ ℤ) → (2 ≠ 0 ↔ (♯‘{2, 0}) = 2))
7168, 69, 70mp2an 692 . . . . . . . . . . . . . . 15 (2 ≠ 0 ↔ (♯‘{2, 0}) = 2)
7267, 71mpbi 230 . . . . . . . . . . . . . 14 (♯‘{2, 0}) = 2
7366, 72eqtrdi 2792 . . . . . . . . . . . . 13 (𝑝 = {2, 0} → (♯‘𝑝) = 2)
7465, 73jca 511 . . . . . . . . . . . 12 (𝑝 = {2, 0} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
75 3nn0 12546 . . . . . . . . . . . . . . . 16 3 ∈ ℕ0
76 3re 12347 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
77 3lt4 12441 . . . . . . . . . . . . . . . . 17 3 < 4
7876, 17, 77ltleii 11385 . . . . . . . . . . . . . . . 16 3 ≤ 4
79 elfz2nn0 13659 . . . . . . . . . . . . . . . 16 (3 ∈ (0...4) ↔ (3 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 3 ≤ 4))
8075, 15, 78, 79mpbir3an 1341 . . . . . . . . . . . . . . 15 3 ∈ (0...4)
8180, 22eleqtrri 2839 . . . . . . . . . . . . . 14 3 ∈ 𝑉
82 prelpwi 5451 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑉 ∧ 3 ∈ 𝑉) → {0, 3} ∈ 𝒫 𝑉)
83 eleq1 2828 . . . . . . . . . . . . . . 15 (𝑝 = {0, 3} → (𝑝 ∈ 𝒫 𝑉 ↔ {0, 3} ∈ 𝒫 𝑉))
8482, 83syl5ibrcom 247 . . . . . . . . . . . . . 14 ((0 ∈ 𝑉 ∧ 3 ∈ 𝑉) → (𝑝 = {0, 3} → 𝑝 ∈ 𝒫 𝑉))
8523, 81, 84mp2an 692 . . . . . . . . . . . . 13 (𝑝 = {0, 3} → 𝑝 ∈ 𝒫 𝑉)
86 fveq2 6905 . . . . . . . . . . . . . 14 (𝑝 = {0, 3} → (♯‘𝑝) = (♯‘{0, 3}))
87 3ne0 12373 . . . . . . . . . . . . . . . 16 3 ≠ 0
8887necomi 2994 . . . . . . . . . . . . . . 15 0 ≠ 3
89 3z 12652 . . . . . . . . . . . . . . . 16 3 ∈ ℤ
90 hashprg 14435 . . . . . . . . . . . . . . . 16 ((0 ∈ ℤ ∧ 3 ∈ ℤ) → (0 ≠ 3 ↔ (♯‘{0, 3}) = 2))
9169, 89, 90mp2an 692 . . . . . . . . . . . . . . 15 (0 ≠ 3 ↔ (♯‘{0, 3}) = 2)
9288, 91mpbi 230 . . . . . . . . . . . . . 14 (♯‘{0, 3}) = 2
9386, 92eqtrdi 2792 . . . . . . . . . . . . 13 (𝑝 = {0, 3} → (♯‘𝑝) = 2)
9485, 93jca 511 . . . . . . . . . . . 12 (𝑝 = {0, 3} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
9574, 94jaoi 857 . . . . . . . . . . 11 ((𝑝 = {2, 0} ∨ 𝑝 = {0, 3}) → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
9661, 95sylbi 217 . . . . . . . . . 10 (𝑝 ∈ {{2, 0}, {0, 3}} → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
9760, 96jaoi 857 . . . . . . . . 9 ((𝑝 ∈ {{0, 1}, {1, 2}} ∨ 𝑝 ∈ {{2, 0}, {0, 3}}) → (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
98 elun 4152 . . . . . . . . 9 (𝑝 ∈ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ↔ (𝑝 ∈ {{0, 1}, {1, 2}} ∨ 𝑝 ∈ {{2, 0}, {0, 3}}))
99 fveqeq2 6914 . . . . . . . . . 10 (𝑒 = 𝑝 → ((♯‘𝑒) = 2 ↔ (♯‘𝑝) = 2))
10099elrab 3691 . . . . . . . . 9 (𝑝 ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
10197, 98, 1003imtr4i 292 . . . . . . . 8 (𝑝 ∈ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝑝 ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
102101ssriv 3986 . . . . . . 7 ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
10311, 102sstrdi 3995 . . . . . 6 (ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → ran 𝐸 ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
104103anim2i 617 . . . . 5 ((𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})) → (𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}))
105 df-f 6564 . . . . 5 (𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ↔ (𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})))
106 df-f 6564 . . . . 5 (𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ (𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}))
107104, 105, 1063imtr4i 292 . . . 4 (𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
108107anim1i 615 . . 3 ((𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥) → (𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥))
109 dff12 6802 . . 3 (𝐸:dom 𝐸1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ↔ (𝐸:dom 𝐸⟶({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥))
110 dff12 6802 . . 3 (𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ (𝐸:dom 𝐸⟶{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ∧ ∀𝑥∃*𝑦 𝑦𝐸𝑥))
111108, 109, 1103imtr4i 292 . 2 (𝐸:dom 𝐸1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
1129, 10, 111mp2b 10 1 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1537   = wceq 1539  wcel 2107  ∃*wmo 2537  wne 2939  {crab 3435  Vcvv 3479  cun 3948  wss 3950  𝒫 cpw 4599  {cpr 4627   class class class wbr 5142  dom cdm 5684  ran crn 5685   Fn wfn 6555  wf 6556  1-1wf1 6557  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  0cc0 11156  1c1 11157  cle 11297  cn 12267  2c2 12322  3c3 12323  4c4 12324  0cn0 12528  cz 12615  ...cfz 13548  chash 14370  ⟨“cs4 14883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-concat 14610  df-s1 14635  df-s2 14888  df-s3 14889  df-s4 14890
This theorem is referenced by:  usgrexmpl  29281
  Copyright terms: Public domain W3C validator