Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dff1o3 | Structured version Visualization version GIF version |
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
dff1o3 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan32 1095 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun ◡𝐹)) | |
2 | dff1o2 6705 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) | |
3 | df-fo 6424 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
4 | 3 | anbi1i 623 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun ◡𝐹)) |
5 | 1, 2, 4 | 3bitr4i 302 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ◡ccnv 5579 ran crn 5581 Fun wfun 6412 Fn wfn 6413 –onto→wfo 6416 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 |
This theorem is referenced by: f1ofo 6707 resdif 6720 f1opw 7503 f11o 7763 1stconst 7911 2ndconst 7912 curry1 7915 curry2 7918 f1o2ndf1 7934 ssdomg 8741 phplem4 8895 php3 8899 dif1enlem 8905 f1opwfi 9053 cantnfp1lem3 9368 fpwwe2lem5 10322 canthp1lem2 10340 odf1o2 19093 dprdf1o 19550 relogf1o 25627 iseupthf1o 28467 padct 30956 ballotlemfrc 32393 poimirlem1 35705 poimirlem2 35706 poimirlem3 35707 poimirlem4 35708 poimirlem6 35710 poimirlem7 35711 poimirlem9 35713 poimirlem11 35715 poimirlem12 35716 poimirlem13 35717 poimirlem14 35718 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 poimirlem23 35727 poimirlem24 35728 poimirlem25 35729 poimirlem29 35733 poimirlem31 35735 ntrneifv2 41579 |
Copyright terms: Public domain | W3C validator |