| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff1o3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o3 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anan32 1096 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun ◡𝐹)) | |
| 2 | dff1o2 6763 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) | |
| 3 | df-fo 6482 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | 3 | anbi1i 624 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun ◡𝐹)) |
| 5 | 1, 2, 4 | 3bitr4i 303 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ◡ccnv 5610 ran crn 5612 Fun wfun 6470 Fn wfn 6471 –onto→wfo 6474 –1-1-onto→wf1o 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1781 df-cleq 2723 df-ss 3914 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 |
| This theorem is referenced by: f1ofo 6765 resdif 6779 f1opw 7597 f11o 7874 1stconst 8025 2ndconst 8026 curry1 8029 curry2 8032 f1o2ndf1 8047 ssdomg 8917 dif1enlem 9064 phplem2 9109 php3 9113 f1opwfi 9235 cantnfp1lem3 9565 fpwwe2lem5 10521 canthp1lem2 10539 odf1o2 19480 dprdf1o 19941 relogf1o 26497 iseupthf1o 30174 padct 32693 ballotlemfrc 34532 poimirlem1 37661 poimirlem2 37662 poimirlem3 37663 poimirlem4 37664 poimirlem6 37666 poimirlem7 37667 poimirlem9 37669 poimirlem11 37671 poimirlem12 37672 poimirlem13 37673 poimirlem14 37674 poimirlem16 37676 poimirlem17 37677 poimirlem19 37679 poimirlem20 37680 poimirlem23 37683 poimirlem24 37684 poimirlem25 37685 poimirlem29 37689 poimirlem31 37691 ntrneifv2 44113 permaxpow 45042 upgrimpthslem1 47938 upgrimspths 47941 idfth 49190 idsubc 49192 |
| Copyright terms: Public domain | W3C validator |