| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff1o3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o3 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anan32 1096 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun ◡𝐹)) | |
| 2 | dff1o2 6787 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) | |
| 3 | df-fo 6505 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | 3 | anbi1i 624 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun ◡𝐹)) |
| 5 | 1, 2, 4 | 3bitr4i 303 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ◡ccnv 5630 ran crn 5632 Fun wfun 6493 Fn wfn 6494 –onto→wfo 6497 –1-1-onto→wf1o 6498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-cleq 2721 df-ss 3928 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 |
| This theorem is referenced by: f1ofo 6789 resdif 6803 f1opw 7625 f11o 7905 1stconst 8056 2ndconst 8057 curry1 8060 curry2 8063 f1o2ndf1 8078 ssdomg 8948 dif1enlem 9097 dif1enlemOLD 9098 phplem2 9146 php3 9150 f1opwfi 9283 cantnfp1lem3 9609 fpwwe2lem5 10564 canthp1lem2 10582 odf1o2 19479 dprdf1o 19940 relogf1o 26451 iseupthf1o 30104 padct 32616 ballotlemfrc 34491 poimirlem1 37588 poimirlem2 37589 poimirlem3 37590 poimirlem4 37591 poimirlem6 37593 poimirlem7 37594 poimirlem9 37596 poimirlem11 37598 poimirlem12 37599 poimirlem13 37600 poimirlem14 37601 poimirlem16 37603 poimirlem17 37604 poimirlem19 37606 poimirlem20 37607 poimirlem23 37610 poimirlem24 37611 poimirlem25 37612 poimirlem29 37616 poimirlem31 37618 ntrneifv2 44042 permaxpow 44972 upgrimpthslem1 47880 upgrimspths 47883 idfth 49120 idsubc 49122 |
| Copyright terms: Public domain | W3C validator |