| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff1o3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o3 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anan32 1096 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun ◡𝐹)) | |
| 2 | dff1o2 6773 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) | |
| 3 | df-fo 6492 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | 3 | anbi1i 624 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun ◡𝐹)) |
| 5 | 1, 2, 4 | 3bitr4i 303 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ◡ccnv 5622 ran crn 5624 Fun wfun 6480 Fn wfn 6481 –onto→wfo 6484 –1-1-onto→wf1o 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-cleq 2721 df-ss 3922 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 |
| This theorem is referenced by: f1ofo 6775 resdif 6789 f1opw 7609 f11o 7889 1stconst 8040 2ndconst 8041 curry1 8044 curry2 8047 f1o2ndf1 8062 ssdomg 8932 dif1enlem 9080 dif1enlemOLD 9081 phplem2 9129 php3 9133 f1opwfi 9265 cantnfp1lem3 9595 fpwwe2lem5 10548 canthp1lem2 10566 odf1o2 19470 dprdf1o 19931 relogf1o 26491 iseupthf1o 30164 padct 32676 ballotlemfrc 34497 poimirlem1 37603 poimirlem2 37604 poimirlem3 37605 poimirlem4 37606 poimirlem6 37608 poimirlem7 37609 poimirlem9 37611 poimirlem11 37613 poimirlem12 37614 poimirlem13 37615 poimirlem14 37616 poimirlem16 37618 poimirlem17 37619 poimirlem19 37621 poimirlem20 37622 poimirlem23 37625 poimirlem24 37626 poimirlem25 37627 poimirlem29 37631 poimirlem31 37633 ntrneifv2 44056 permaxpow 44986 upgrimpthslem1 47895 upgrimspths 47898 idfth 49147 idsubc 49149 |
| Copyright terms: Public domain | W3C validator |