MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o3 Structured version   Visualization version   GIF version

Theorem dff1o3 6829
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o3 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))

Proof of Theorem dff1o3
StepHypRef Expression
1 3anan32 1096 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun 𝐹))
2 dff1o2 6828 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
3 df-fo 6542 . . 3 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
43anbi1i 624 . 2 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐹) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun 𝐹))
51, 2, 43bitr4i 303 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  ccnv 5658  ran crn 5660  Fun wfun 6530   Fn wfn 6531  ontowfo 6534  1-1-ontowf1o 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-ex 1780  df-cleq 2728  df-ss 3948  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543
This theorem is referenced by:  f1ofo  6830  resdif  6844  f1opw  7668  f11o  7950  1stconst  8104  2ndconst  8105  curry1  8108  curry2  8111  f1o2ndf1  8126  ssdomg  9019  dif1enlem  9175  dif1enlemOLD  9176  phplem2  9224  php3  9228  php3OLD  9238  f1opwfi  9373  cantnfp1lem3  9699  fpwwe2lem5  10654  canthp1lem2  10672  odf1o2  19559  dprdf1o  20020  relogf1o  26532  iseupthf1o  30188  padct  32702  ballotlemfrc  34564  poimirlem1  37650  poimirlem2  37651  poimirlem3  37652  poimirlem4  37653  poimirlem6  37655  poimirlem7  37656  poimirlem9  37658  poimirlem11  37660  poimirlem12  37661  poimirlem13  37662  poimirlem14  37663  poimirlem16  37665  poimirlem17  37666  poimirlem19  37668  poimirlem20  37669  poimirlem23  37672  poimirlem24  37673  poimirlem25  37674  poimirlem29  37678  poimirlem31  37680  ntrneifv2  44071  permaxpow  45001  upgrimpthslem1  47887  upgrimspths  47890  idfth  49065  idsubc  49066
  Copyright terms: Public domain W3C validator