MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o3 Structured version   Visualization version   GIF version

Theorem dff1o3 6836
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o3 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))

Proof of Theorem dff1o3
StepHypRef Expression
1 3anan32 1097 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun 𝐹))
2 dff1o2 6835 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
3 df-fo 6546 . . 3 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
43anbi1i 624 . 2 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐹) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun 𝐹))
51, 2, 43bitr4i 302 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  ccnv 5674  ran crn 5676  Fun wfun 6534   Fn wfn 6535  ontowfo 6538  1-1-ontowf1o 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3954  df-ss 3964  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547
This theorem is referenced by:  f1ofo  6837  resdif  6851  f1opw  7658  f11o  7929  1stconst  8082  2ndconst  8083  curry1  8086  curry2  8089  f1o2ndf1  8104  ssdomg  8992  dif1enlem  9152  dif1enlemOLD  9153  phplem2  9204  php3  9208  phplem4OLD  9216  php3OLD  9220  f1opwfi  9352  cantnfp1lem3  9671  fpwwe2lem5  10626  canthp1lem2  10644  odf1o2  19435  dprdf1o  19896  relogf1o  26066  iseupthf1o  29444  padct  31931  ballotlemfrc  33513  poimirlem1  36477  poimirlem2  36478  poimirlem3  36479  poimirlem4  36480  poimirlem6  36482  poimirlem7  36483  poimirlem9  36485  poimirlem11  36487  poimirlem12  36488  poimirlem13  36489  poimirlem14  36490  poimirlem16  36492  poimirlem17  36493  poimirlem19  36495  poimirlem20  36496  poimirlem23  36499  poimirlem24  36500  poimirlem25  36501  poimirlem29  36505  poimirlem31  36507  ntrneifv2  42816
  Copyright terms: Public domain W3C validator