MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o3 Structured version   Visualization version   GIF version

Theorem dff1o3 6840
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o3 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))

Proof of Theorem dff1o3
StepHypRef Expression
1 3anan32 1098 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun 𝐹))
2 dff1o2 6839 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
3 df-fo 6550 . . 3 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
43anbi1i 625 . 2 ((𝐹:𝐴onto𝐵 ∧ Fun 𝐹) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun 𝐹))
51, 2, 43bitr4i 303 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1088   = wceq 1542  ccnv 5676  ran crn 5678  Fun wfun 6538   Fn wfn 6539  ontowfo 6542  1-1-ontowf1o 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551
This theorem is referenced by:  f1ofo  6841  resdif  6855  f1opw  7662  f11o  7933  1stconst  8086  2ndconst  8087  curry1  8090  curry2  8093  f1o2ndf1  8108  ssdomg  8996  dif1enlem  9156  dif1enlemOLD  9157  phplem2  9208  php3  9212  phplem4OLD  9220  php3OLD  9224  f1opwfi  9356  cantnfp1lem3  9675  fpwwe2lem5  10630  canthp1lem2  10648  odf1o2  19441  dprdf1o  19902  relogf1o  26075  iseupthf1o  29486  padct  31975  ballotlemfrc  33556  poimirlem1  36537  poimirlem2  36538  poimirlem3  36539  poimirlem4  36540  poimirlem6  36542  poimirlem7  36543  poimirlem9  36545  poimirlem11  36547  poimirlem12  36548  poimirlem13  36549  poimirlem14  36550  poimirlem16  36552  poimirlem17  36553  poimirlem19  36555  poimirlem20  36556  poimirlem23  36559  poimirlem24  36560  poimirlem25  36561  poimirlem29  36565  poimirlem31  36567  ntrneifv2  42879
  Copyright terms: Public domain W3C validator