| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff1o3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o3 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anan32 1096 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun ◡𝐹)) | |
| 2 | dff1o2 6805 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) | |
| 3 | df-fo 6517 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | 3 | anbi1i 624 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun ◡𝐹)) |
| 5 | 1, 2, 4 | 3bitr4i 303 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ◡ccnv 5637 ran crn 5639 Fun wfun 6505 Fn wfn 6506 –onto→wfo 6509 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-cleq 2721 df-ss 3931 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: f1ofo 6807 resdif 6821 f1opw 7645 f11o 7925 1stconst 8079 2ndconst 8080 curry1 8083 curry2 8086 f1o2ndf1 8101 ssdomg 8971 dif1enlem 9120 dif1enlemOLD 9121 phplem2 9169 php3 9173 f1opwfi 9307 cantnfp1lem3 9633 fpwwe2lem5 10588 canthp1lem2 10606 odf1o2 19503 dprdf1o 19964 relogf1o 26475 iseupthf1o 30131 padct 32643 ballotlemfrc 34518 poimirlem1 37615 poimirlem2 37616 poimirlem3 37617 poimirlem4 37618 poimirlem6 37620 poimirlem7 37621 poimirlem9 37623 poimirlem11 37625 poimirlem12 37626 poimirlem13 37627 poimirlem14 37628 poimirlem16 37630 poimirlem17 37631 poimirlem19 37633 poimirlem20 37634 poimirlem23 37637 poimirlem24 37638 poimirlem25 37639 poimirlem29 37643 poimirlem31 37645 ntrneifv2 44069 permaxpow 44999 upgrimpthslem1 47907 upgrimspths 47910 idfth 49147 idsubc 49149 |
| Copyright terms: Public domain | W3C validator |