| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff1o3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o3 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anan32 1096 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun ◡𝐹)) | |
| 2 | dff1o2 6776 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) | |
| 3 | df-fo 6495 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | 3 | anbi1i 624 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun ◡𝐹)) |
| 5 | 1, 2, 4 | 3bitr4i 303 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ◡ccnv 5620 ran crn 5622 Fun wfun 6483 Fn wfn 6484 –onto→wfo 6487 –1-1-onto→wf1o 6488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1781 df-cleq 2725 df-ss 3915 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 |
| This theorem is referenced by: f1ofo 6778 resdif 6792 f1opw 7611 f11o 7888 1stconst 8039 2ndconst 8040 curry1 8043 curry2 8046 f1o2ndf1 8061 ssdomg 8933 dif1enlem 9080 phplem2 9125 php3 9129 f1opwfi 9251 cantnfp1lem3 9581 fpwwe2lem5 10537 canthp1lem2 10555 odf1o2 19493 dprdf1o 19954 relogf1o 26522 iseupthf1o 30203 padct 32725 ballotlemfrc 34612 poimirlem1 37734 poimirlem2 37735 poimirlem3 37736 poimirlem4 37737 poimirlem6 37739 poimirlem7 37740 poimirlem9 37742 poimirlem11 37744 poimirlem12 37745 poimirlem13 37746 poimirlem14 37747 poimirlem16 37749 poimirlem17 37750 poimirlem19 37752 poimirlem20 37753 poimirlem23 37756 poimirlem24 37757 poimirlem25 37758 poimirlem29 37762 poimirlem31 37764 ntrneifv2 44237 permaxpow 45166 upgrimpthslem1 48069 upgrimspths 48072 idfth 49319 idsubc 49321 |
| Copyright terms: Public domain | W3C validator |