HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adj1o Structured version   Visualization version   GIF version

Theorem adj1o 29077
Description: The adjoint function maps one-to-one onto its domain. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adj1o adj:dom adj1-1-onto→dom adj

Proof of Theorem adj1o
StepHypRef Expression
1 funadj 29069 . . 3 Fun adj
2 funfn 6127 . . 3 (Fun adj ↔ adj Fn dom adj)
31, 2mpbi 221 . 2 adj Fn dom adj
4 funcnvadj 29076 . 2 Fun adj
5 df-rn 5322 . . 3 ran adj = dom adj
6 cnvadj 29075 . . . 4 adj = adj
76dmeqi 5526 . . 3 dom adj = dom adj
85, 7eqtri 2828 . 2 ran adj = dom adj
9 dff1o2 6354 . 2 (adj:dom adj1-1-onto→dom adj ↔ (adj Fn dom adj ∧ Fun adj ∧ ran adj = dom adj))
103, 4, 8, 9mpbir3an 1434 1 adj:dom adj1-1-onto→dom adj
Colors of variables: wff setvar class
Syntax hints:   = wceq 1637  ccnv 5310  dom cdm 5311  ran crn 5312  Fun wfun 6091   Fn wfn 6092  1-1-ontowf1o 6096  adjcado 28136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294  ax-hfvadd 28181  ax-hvcom 28182  ax-hvass 28183  ax-hv0cl 28184  ax-hvaddid 28185  ax-hfvmul 28186  ax-hvmulid 28187  ax-hvdistr2 28190  ax-hvmul0 28191  ax-hfi 28260  ax-his1 28263  ax-his2 28264  ax-his3 28265  ax-his4 28266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-po 5232  df-so 5233  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-er 7975  df-en 8189  df-dom 8190  df-sdom 8191  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-div 10966  df-2 11360  df-cj 14058  df-re 14059  df-im 14060  df-hvsub 28152  df-adjh 29032
This theorem is referenced by:  dmadjrn  29078  adjbdlnb  29267  adjbd1o  29268
  Copyright terms: Public domain W3C validator