| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > adj1o | Structured version Visualization version GIF version | ||
| Description: The adjoint function maps one-to-one onto its domain. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| adj1o | ⊢ adjℎ:dom adjℎ–1-1-onto→dom adjℎ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funadj 31870 | . . 3 ⊢ Fun adjℎ | |
| 2 | funfn 6518 | . . 3 ⊢ (Fun adjℎ ↔ adjℎ Fn dom adjℎ) | |
| 3 | 1, 2 | mpbi 230 | . 2 ⊢ adjℎ Fn dom adjℎ |
| 4 | funcnvadj 31877 | . 2 ⊢ Fun ◡adjℎ | |
| 5 | df-rn 5632 | . . 3 ⊢ ran adjℎ = dom ◡adjℎ | |
| 6 | cnvadj 31876 | . . . 4 ⊢ ◡adjℎ = adjℎ | |
| 7 | 6 | dmeqi 5850 | . . 3 ⊢ dom ◡adjℎ = dom adjℎ |
| 8 | 5, 7 | eqtri 2756 | . 2 ⊢ ran adjℎ = dom adjℎ |
| 9 | dff1o2 6775 | . 2 ⊢ (adjℎ:dom adjℎ–1-1-onto→dom adjℎ ↔ (adjℎ Fn dom adjℎ ∧ Fun ◡adjℎ ∧ ran adjℎ = dom adjℎ)) | |
| 10 | 3, 4, 8, 9 | mpbir3an 1342 | 1 ⊢ adjℎ:dom adjℎ–1-1-onto→dom adjℎ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ◡ccnv 5620 dom cdm 5621 ran crn 5622 Fun wfun 6482 Fn wfn 6483 –1-1-onto→wf1o 6487 adjℎcado 30939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-hfvadd 30984 ax-hvcom 30985 ax-hvass 30986 ax-hv0cl 30987 ax-hvaddid 30988 ax-hfvmul 30989 ax-hvmulid 30990 ax-hvdistr2 30993 ax-hvmul0 30994 ax-hfi 31063 ax-his1 31066 ax-his2 31067 ax-his3 31068 ax-his4 31069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-cj 15010 df-re 15011 df-im 15012 df-hvsub 30955 df-adjh 31833 |
| This theorem is referenced by: dmadjrn 31879 adjbdlnb 32068 adjbd1o 32069 |
| Copyright terms: Public domain | W3C validator |