![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > adj1o | Structured version Visualization version GIF version |
Description: The adjoint function maps one-to-one onto its domain. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
adj1o | ⊢ adjℎ:dom adjℎ–1-1-onto→dom adjℎ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funadj 31126 | . . 3 ⊢ Fun adjℎ | |
2 | funfn 6575 | . . 3 ⊢ (Fun adjℎ ↔ adjℎ Fn dom adjℎ) | |
3 | 1, 2 | mpbi 229 | . 2 ⊢ adjℎ Fn dom adjℎ |
4 | funcnvadj 31133 | . 2 ⊢ Fun ◡adjℎ | |
5 | df-rn 5686 | . . 3 ⊢ ran adjℎ = dom ◡adjℎ | |
6 | cnvadj 31132 | . . . 4 ⊢ ◡adjℎ = adjℎ | |
7 | 6 | dmeqi 5902 | . . 3 ⊢ dom ◡adjℎ = dom adjℎ |
8 | 5, 7 | eqtri 2760 | . 2 ⊢ ran adjℎ = dom adjℎ |
9 | dff1o2 6835 | . 2 ⊢ (adjℎ:dom adjℎ–1-1-onto→dom adjℎ ↔ (adjℎ Fn dom adjℎ ∧ Fun ◡adjℎ ∧ ran adjℎ = dom adjℎ)) | |
10 | 3, 4, 8, 9 | mpbir3an 1341 | 1 ⊢ adjℎ:dom adjℎ–1-1-onto→dom adjℎ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ◡ccnv 5674 dom cdm 5675 ran crn 5676 Fun wfun 6534 Fn wfn 6535 –1-1-onto→wf1o 6539 adjℎcado 30195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-hfvadd 30240 ax-hvcom 30241 ax-hvass 30242 ax-hv0cl 30243 ax-hvaddid 30244 ax-hfvmul 30245 ax-hvmulid 30246 ax-hvdistr2 30249 ax-hvmul0 30250 ax-hfi 30319 ax-his1 30322 ax-his2 30323 ax-his3 30324 ax-his4 30325 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-2 12271 df-cj 15042 df-re 15043 df-im 15044 df-hvsub 30211 df-adjh 31089 |
This theorem is referenced by: dmadjrn 31135 adjbdlnb 31324 adjbd1o 31325 |
Copyright terms: Public domain | W3C validator |