| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > adj1o | Structured version Visualization version GIF version | ||
| Description: The adjoint function maps one-to-one onto its domain. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| adj1o | ⊢ adjℎ:dom adjℎ–1-1-onto→dom adjℎ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funadj 31822 | . . 3 ⊢ Fun adjℎ | |
| 2 | funfn 6554 | . . 3 ⊢ (Fun adjℎ ↔ adjℎ Fn dom adjℎ) | |
| 3 | 1, 2 | mpbi 230 | . 2 ⊢ adjℎ Fn dom adjℎ |
| 4 | funcnvadj 31829 | . 2 ⊢ Fun ◡adjℎ | |
| 5 | df-rn 5657 | . . 3 ⊢ ran adjℎ = dom ◡adjℎ | |
| 6 | cnvadj 31828 | . . . 4 ⊢ ◡adjℎ = adjℎ | |
| 7 | 6 | dmeqi 5876 | . . 3 ⊢ dom ◡adjℎ = dom adjℎ |
| 8 | 5, 7 | eqtri 2753 | . 2 ⊢ ran adjℎ = dom adjℎ |
| 9 | dff1o2 6812 | . 2 ⊢ (adjℎ:dom adjℎ–1-1-onto→dom adjℎ ↔ (adjℎ Fn dom adjℎ ∧ Fun ◡adjℎ ∧ ran adjℎ = dom adjℎ)) | |
| 10 | 3, 4, 8, 9 | mpbir3an 1342 | 1 ⊢ adjℎ:dom adjℎ–1-1-onto→dom adjℎ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5645 dom cdm 5646 ran crn 5647 Fun wfun 6513 Fn wfn 6514 –1-1-onto→wf1o 6518 adjℎcado 30891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvdistr2 30945 ax-hvmul0 30946 ax-hfi 31015 ax-his1 31018 ax-his2 31019 ax-his3 31020 ax-his4 31021 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-cj 15075 df-re 15076 df-im 15077 df-hvsub 30907 df-adjh 31785 |
| This theorem is referenced by: dmadjrn 31831 adjbdlnb 32020 adjbd1o 32021 |
| Copyright terms: Public domain | W3C validator |