Proof of Theorem fresf1o
Step | Hyp | Ref
| Expression |
1 | | funfn 6410 |
. . . . . . 7
⊢ (Fun
(◡𝐹 ↾ 𝐶) ↔ (◡𝐹 ↾ 𝐶) Fn dom (◡𝐹 ↾ 𝐶)) |
2 | 1 | biimpi 219 |
. . . . . 6
⊢ (Fun
(◡𝐹 ↾ 𝐶) → (◡𝐹 ↾ 𝐶) Fn dom (◡𝐹 ↾ 𝐶)) |
3 | 2 | 3ad2ant3 1137 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (◡𝐹 ↾ 𝐶) Fn dom (◡𝐹 ↾ 𝐶)) |
4 | | simp2 1139 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → 𝐶 ⊆ ran 𝐹) |
5 | | df-rn 5562 |
. . . . . . . 8
⊢ ran 𝐹 = dom ◡𝐹 |
6 | 4, 5 | sseqtrdi 3951 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → 𝐶 ⊆ dom ◡𝐹) |
7 | | ssdmres 5874 |
. . . . . . 7
⊢ (𝐶 ⊆ dom ◡𝐹 ↔ dom (◡𝐹 ↾ 𝐶) = 𝐶) |
8 | 6, 7 | sylib 221 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → dom (◡𝐹 ↾ 𝐶) = 𝐶) |
9 | 8 | fneq2d 6473 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → ((◡𝐹 ↾ 𝐶) Fn dom (◡𝐹 ↾ 𝐶) ↔ (◡𝐹 ↾ 𝐶) Fn 𝐶)) |
10 | 3, 9 | mpbid 235 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (◡𝐹 ↾ 𝐶) Fn 𝐶) |
11 | | simp1 1138 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → Fun 𝐹) |
12 | 11 | funresd 6423 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → Fun (𝐹 ↾ (◡𝐹 “ 𝐶))) |
13 | | funcnvres2 6460 |
. . . . . . 7
⊢ (Fun
𝐹 → ◡(◡𝐹 ↾ 𝐶) = (𝐹 ↾ (◡𝐹 “ 𝐶))) |
14 | 11, 13 | syl 17 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → ◡(◡𝐹 ↾ 𝐶) = (𝐹 ↾ (◡𝐹 “ 𝐶))) |
15 | 14 | funeqd 6402 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (Fun ◡(◡𝐹 ↾ 𝐶) ↔ Fun (𝐹 ↾ (◡𝐹 “ 𝐶)))) |
16 | 12, 15 | mpbird 260 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → Fun ◡(◡𝐹 ↾ 𝐶)) |
17 | | df-ima 5564 |
. . . . . 6
⊢ (◡𝐹 “ 𝐶) = ran (◡𝐹 ↾ 𝐶) |
18 | 17 | eqcomi 2746 |
. . . . 5
⊢ ran
(◡𝐹 ↾ 𝐶) = (◡𝐹 “ 𝐶) |
19 | 18 | a1i 11 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → ran (◡𝐹 ↾ 𝐶) = (◡𝐹 “ 𝐶)) |
20 | | dff1o2 6666 |
. . . 4
⊢ ((◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶) ↔ ((◡𝐹 ↾ 𝐶) Fn 𝐶 ∧ Fun ◡(◡𝐹 ↾ 𝐶) ∧ ran (◡𝐹 ↾ 𝐶) = (◡𝐹 “ 𝐶))) |
21 | 10, 16, 19, 20 | syl3anbrc 1345 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶)) |
22 | | f1ocnv 6673 |
. . 3
⊢ ((◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶) → ◡(◡𝐹 ↾ 𝐶):(◡𝐹 “ 𝐶)–1-1-onto→𝐶) |
23 | 21, 22 | syl 17 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → ◡(◡𝐹 ↾ 𝐶):(◡𝐹 “ 𝐶)–1-1-onto→𝐶) |
24 | | f1oeq1 6649 |
. . 3
⊢ (◡(◡𝐹 ↾ 𝐶) = (𝐹 ↾ (◡𝐹 “ 𝐶)) → (◡(◡𝐹 ↾ 𝐶):(◡𝐹 “ 𝐶)–1-1-onto→𝐶 ↔ (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–1-1-onto→𝐶)) |
25 | 11, 13, 24 | 3syl 18 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (◡(◡𝐹 ↾ 𝐶):(◡𝐹 “ 𝐶)–1-1-onto→𝐶 ↔ (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–1-1-onto→𝐶)) |
26 | 23, 25 | mpbid 235 |
1
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–1-1-onto→𝐶) |