Proof of Theorem fresf1o
| Step | Hyp | Ref
| Expression |
| 1 | | funfn 6575 |
. . . . . . 7
⊢ (Fun
(◡𝐹 ↾ 𝐶) ↔ (◡𝐹 ↾ 𝐶) Fn dom (◡𝐹 ↾ 𝐶)) |
| 2 | 1 | biimpi 216 |
. . . . . 6
⊢ (Fun
(◡𝐹 ↾ 𝐶) → (◡𝐹 ↾ 𝐶) Fn dom (◡𝐹 ↾ 𝐶)) |
| 3 | 2 | 3ad2ant3 1135 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (◡𝐹 ↾ 𝐶) Fn dom (◡𝐹 ↾ 𝐶)) |
| 4 | | simp2 1137 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → 𝐶 ⊆ ran 𝐹) |
| 5 | | df-rn 5676 |
. . . . . . . 8
⊢ ran 𝐹 = dom ◡𝐹 |
| 6 | 4, 5 | sseqtrdi 4004 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → 𝐶 ⊆ dom ◡𝐹) |
| 7 | | ssdmres 6011 |
. . . . . . 7
⊢ (𝐶 ⊆ dom ◡𝐹 ↔ dom (◡𝐹 ↾ 𝐶) = 𝐶) |
| 8 | 6, 7 | sylib 218 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → dom (◡𝐹 ↾ 𝐶) = 𝐶) |
| 9 | 8 | fneq2d 6641 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → ((◡𝐹 ↾ 𝐶) Fn dom (◡𝐹 ↾ 𝐶) ↔ (◡𝐹 ↾ 𝐶) Fn 𝐶)) |
| 10 | 3, 9 | mpbid 232 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (◡𝐹 ↾ 𝐶) Fn 𝐶) |
| 11 | | simp1 1136 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → Fun 𝐹) |
| 12 | 11 | funresd 6588 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → Fun (𝐹 ↾ (◡𝐹 “ 𝐶))) |
| 13 | | funcnvres2 6625 |
. . . . . . 7
⊢ (Fun
𝐹 → ◡(◡𝐹 ↾ 𝐶) = (𝐹 ↾ (◡𝐹 “ 𝐶))) |
| 14 | 11, 13 | syl 17 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → ◡(◡𝐹 ↾ 𝐶) = (𝐹 ↾ (◡𝐹 “ 𝐶))) |
| 15 | 14 | funeqd 6567 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (Fun ◡(◡𝐹 ↾ 𝐶) ↔ Fun (𝐹 ↾ (◡𝐹 “ 𝐶)))) |
| 16 | 12, 15 | mpbird 257 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → Fun ◡(◡𝐹 ↾ 𝐶)) |
| 17 | | df-ima 5678 |
. . . . . 6
⊢ (◡𝐹 “ 𝐶) = ran (◡𝐹 ↾ 𝐶) |
| 18 | 17 | eqcomi 2743 |
. . . . 5
⊢ ran
(◡𝐹 ↾ 𝐶) = (◡𝐹 “ 𝐶) |
| 19 | 18 | a1i 11 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → ran (◡𝐹 ↾ 𝐶) = (◡𝐹 “ 𝐶)) |
| 20 | | dff1o2 6832 |
. . . 4
⊢ ((◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶) ↔ ((◡𝐹 ↾ 𝐶) Fn 𝐶 ∧ Fun ◡(◡𝐹 ↾ 𝐶) ∧ ran (◡𝐹 ↾ 𝐶) = (◡𝐹 “ 𝐶))) |
| 21 | 10, 16, 19, 20 | syl3anbrc 1343 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶)) |
| 22 | | f1ocnv 6839 |
. . 3
⊢ ((◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶) → ◡(◡𝐹 ↾ 𝐶):(◡𝐹 “ 𝐶)–1-1-onto→𝐶) |
| 23 | 21, 22 | syl 17 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → ◡(◡𝐹 ↾ 𝐶):(◡𝐹 “ 𝐶)–1-1-onto→𝐶) |
| 24 | | f1oeq1 6815 |
. . 3
⊢ (◡(◡𝐹 ↾ 𝐶) = (𝐹 ↾ (◡𝐹 “ 𝐶)) → (◡(◡𝐹 ↾ 𝐶):(◡𝐹 “ 𝐶)–1-1-onto→𝐶 ↔ (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–1-1-onto→𝐶)) |
| 25 | 11, 13, 24 | 3syl 18 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (◡(◡𝐹 ↾ 𝐶):(◡𝐹 “ 𝐶)–1-1-onto→𝐶 ↔ (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–1-1-onto→𝐶)) |
| 26 | 23, 25 | mpbid 232 |
1
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–1-1-onto→𝐶) |