Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fresf1o Structured version   Visualization version   GIF version

Theorem fresf1o 32661
Description: Conditions for a restriction to be a one-to-one onto function. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Assertion
Ref Expression
fresf1o ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1-onto𝐶)

Proof of Theorem fresf1o
StepHypRef Expression
1 funfn 6601 . . . . . . 7 (Fun (𝐹𝐶) ↔ (𝐹𝐶) Fn dom (𝐹𝐶))
21biimpi 216 . . . . . 6 (Fun (𝐹𝐶) → (𝐹𝐶) Fn dom (𝐹𝐶))
323ad2ant3 1135 . . . . 5 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹𝐶) Fn dom (𝐹𝐶))
4 simp2 1137 . . . . . . . 8 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → 𝐶 ⊆ ran 𝐹)
5 df-rn 5701 . . . . . . . 8 ran 𝐹 = dom 𝐹
64, 5sseqtrdi 4047 . . . . . . 7 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → 𝐶 ⊆ dom 𝐹)
7 ssdmres 6035 . . . . . . 7 (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶)
86, 7sylib 218 . . . . . 6 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → dom (𝐹𝐶) = 𝐶)
98fneq2d 6667 . . . . 5 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → ((𝐹𝐶) Fn dom (𝐹𝐶) ↔ (𝐹𝐶) Fn 𝐶))
103, 9mpbid 232 . . . 4 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹𝐶) Fn 𝐶)
11 simp1 1136 . . . . . 6 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → Fun 𝐹)
1211funresd 6614 . . . . 5 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → Fun (𝐹 ↾ (𝐹𝐶)))
13 funcnvres2 6651 . . . . . . 7 (Fun 𝐹(𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
1411, 13syl 17 . . . . . 6 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
1514funeqd 6593 . . . . 5 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (Fun (𝐹𝐶) ↔ Fun (𝐹 ↾ (𝐹𝐶))))
1612, 15mpbird 257 . . . 4 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → Fun (𝐹𝐶))
17 df-ima 5703 . . . . . 6 (𝐹𝐶) = ran (𝐹𝐶)
1817eqcomi 2745 . . . . 5 ran (𝐹𝐶) = (𝐹𝐶)
1918a1i 11 . . . 4 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → ran (𝐹𝐶) = (𝐹𝐶))
20 dff1o2 6858 . . . 4 ((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) ↔ ((𝐹𝐶) Fn 𝐶 ∧ Fun (𝐹𝐶) ∧ ran (𝐹𝐶) = (𝐹𝐶)))
2110, 16, 19, 20syl3anbrc 1343 . . 3 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
22 f1ocnv 6865 . . 3 ((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
2321, 22syl 17 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
24 f1oeq1 6841 . . 3 ((𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)) → ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 ↔ (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1-onto𝐶))
2511, 13, 243syl 18 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 ↔ (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1-onto𝐶))
2623, 25mpbid 232 1 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1-onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1538  wss 3964  ccnv 5689  dom cdm 5690  ran crn 5691  cres 5692  cima 5693  Fun wfun 6560   Fn wfn 6561  1-1-ontowf1o 6565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5150  df-opab 5212  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573
This theorem is referenced by:  carsggect  34313
  Copyright terms: Public domain W3C validator