Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fresf1o Structured version   Visualization version   GIF version

Theorem fresf1o 32652
Description: Conditions for a restriction to be a one-to-one onto function. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Assertion
Ref Expression
fresf1o ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1-onto𝐶)

Proof of Theorem fresf1o
StepHypRef Expression
1 funfn 6610 . . . . . . 7 (Fun (𝐹𝐶) ↔ (𝐹𝐶) Fn dom (𝐹𝐶))
21biimpi 216 . . . . . 6 (Fun (𝐹𝐶) → (𝐹𝐶) Fn dom (𝐹𝐶))
323ad2ant3 1135 . . . . 5 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹𝐶) Fn dom (𝐹𝐶))
4 simp2 1137 . . . . . . . 8 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → 𝐶 ⊆ ran 𝐹)
5 df-rn 5711 . . . . . . . 8 ran 𝐹 = dom 𝐹
64, 5sseqtrdi 4059 . . . . . . 7 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → 𝐶 ⊆ dom 𝐹)
7 ssdmres 6044 . . . . . . 7 (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶)
86, 7sylib 218 . . . . . 6 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → dom (𝐹𝐶) = 𝐶)
98fneq2d 6675 . . . . 5 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → ((𝐹𝐶) Fn dom (𝐹𝐶) ↔ (𝐹𝐶) Fn 𝐶))
103, 9mpbid 232 . . . 4 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹𝐶) Fn 𝐶)
11 simp1 1136 . . . . . 6 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → Fun 𝐹)
1211funresd 6623 . . . . 5 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → Fun (𝐹 ↾ (𝐹𝐶)))
13 funcnvres2 6660 . . . . . . 7 (Fun 𝐹(𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
1411, 13syl 17 . . . . . 6 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
1514funeqd 6602 . . . . 5 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (Fun (𝐹𝐶) ↔ Fun (𝐹 ↾ (𝐹𝐶))))
1612, 15mpbird 257 . . . 4 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → Fun (𝐹𝐶))
17 df-ima 5713 . . . . . 6 (𝐹𝐶) = ran (𝐹𝐶)
1817eqcomi 2749 . . . . 5 ran (𝐹𝐶) = (𝐹𝐶)
1918a1i 11 . . . 4 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → ran (𝐹𝐶) = (𝐹𝐶))
20 dff1o2 6869 . . . 4 ((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) ↔ ((𝐹𝐶) Fn 𝐶 ∧ Fun (𝐹𝐶) ∧ ran (𝐹𝐶) = (𝐹𝐶)))
2110, 16, 19, 20syl3anbrc 1343 . . 3 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
22 f1ocnv 6876 . . 3 ((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
2321, 22syl 17 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
24 f1oeq1 6852 . . 3 ((𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)) → ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 ↔ (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1-onto𝐶))
2511, 13, 243syl 18 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 ↔ (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1-onto𝐶))
2623, 25mpbid 232 1 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1-onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wss 3976  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Fun wfun 6569   Fn wfn 6570  1-1-ontowf1o 6574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582
This theorem is referenced by:  carsggect  34285
  Copyright terms: Public domain W3C validator