Proof of Theorem fresf1o
Step | Hyp | Ref
| Expression |
1 | | funfn 6212 |
. . . . . . 7
⊢ (Fun
(◡𝐹 ↾ 𝐶) ↔ (◡𝐹 ↾ 𝐶) Fn dom (◡𝐹 ↾ 𝐶)) |
2 | 1 | biimpi 208 |
. . . . . 6
⊢ (Fun
(◡𝐹 ↾ 𝐶) → (◡𝐹 ↾ 𝐶) Fn dom (◡𝐹 ↾ 𝐶)) |
3 | 2 | 3ad2ant3 1115 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (◡𝐹 ↾ 𝐶) Fn dom (◡𝐹 ↾ 𝐶)) |
4 | | simp2 1117 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → 𝐶 ⊆ ran 𝐹) |
5 | | df-rn 5412 |
. . . . . . . 8
⊢ ran 𝐹 = dom ◡𝐹 |
6 | 4, 5 | syl6sseq 3901 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → 𝐶 ⊆ dom ◡𝐹) |
7 | | ssdmres 5715 |
. . . . . . 7
⊢ (𝐶 ⊆ dom ◡𝐹 ↔ dom (◡𝐹 ↾ 𝐶) = 𝐶) |
8 | 6, 7 | sylib 210 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → dom (◡𝐹 ↾ 𝐶) = 𝐶) |
9 | 8 | fneq2d 6274 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → ((◡𝐹 ↾ 𝐶) Fn dom (◡𝐹 ↾ 𝐶) ↔ (◡𝐹 ↾ 𝐶) Fn 𝐶)) |
10 | 3, 9 | mpbid 224 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (◡𝐹 ↾ 𝐶) Fn 𝐶) |
11 | | simp1 1116 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → Fun 𝐹) |
12 | | funres 6224 |
. . . . . 6
⊢ (Fun
𝐹 → Fun (𝐹 ↾ (◡𝐹 “ 𝐶))) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → Fun (𝐹 ↾ (◡𝐹 “ 𝐶))) |
14 | | funcnvres2 6261 |
. . . . . . 7
⊢ (Fun
𝐹 → ◡(◡𝐹 ↾ 𝐶) = (𝐹 ↾ (◡𝐹 “ 𝐶))) |
15 | 11, 14 | syl 17 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → ◡(◡𝐹 ↾ 𝐶) = (𝐹 ↾ (◡𝐹 “ 𝐶))) |
16 | 15 | funeqd 6204 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (Fun ◡(◡𝐹 ↾ 𝐶) ↔ Fun (𝐹 ↾ (◡𝐹 “ 𝐶)))) |
17 | 13, 16 | mpbird 249 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → Fun ◡(◡𝐹 ↾ 𝐶)) |
18 | | df-ima 5414 |
. . . . . 6
⊢ (◡𝐹 “ 𝐶) = ran (◡𝐹 ↾ 𝐶) |
19 | 18 | eqcomi 2781 |
. . . . 5
⊢ ran
(◡𝐹 ↾ 𝐶) = (◡𝐹 “ 𝐶) |
20 | 19 | a1i 11 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → ran (◡𝐹 ↾ 𝐶) = (◡𝐹 “ 𝐶)) |
21 | | dff1o2 6443 |
. . . 4
⊢ ((◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶) ↔ ((◡𝐹 ↾ 𝐶) Fn 𝐶 ∧ Fun ◡(◡𝐹 ↾ 𝐶) ∧ ran (◡𝐹 ↾ 𝐶) = (◡𝐹 “ 𝐶))) |
22 | 10, 17, 20, 21 | syl3anbrc 1323 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶)) |
23 | | f1ocnv 6450 |
. . 3
⊢ ((◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶) → ◡(◡𝐹 ↾ 𝐶):(◡𝐹 “ 𝐶)–1-1-onto→𝐶) |
24 | 22, 23 | syl 17 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → ◡(◡𝐹 ↾ 𝐶):(◡𝐹 “ 𝐶)–1-1-onto→𝐶) |
25 | | f1oeq1 6427 |
. . 3
⊢ (◡(◡𝐹 ↾ 𝐶) = (𝐹 ↾ (◡𝐹 “ 𝐶)) → (◡(◡𝐹 ↾ 𝐶):(◡𝐹 “ 𝐶)–1-1-onto→𝐶 ↔ (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–1-1-onto→𝐶)) |
26 | 11, 14, 25 | 3syl 18 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (◡(◡𝐹 ↾ 𝐶):(◡𝐹 “ 𝐶)–1-1-onto→𝐶 ↔ (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–1-1-onto→𝐶)) |
27 | 24, 26 | mpbid 224 |
1
⊢ ((Fun
𝐹 ∧ 𝐶 ⊆ ran 𝐹 ∧ Fun (◡𝐹 ↾ 𝐶)) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–1-1-onto→𝐶) |