Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumc | Structured version Visualization version GIF version |
Description: Convert from the collection form to the class-variable form of a sum. (Contributed by Thierry Arnoux, 10-May-2017.) |
Ref | Expression |
---|---|
esumc.0 | ⊢ Ⅎ𝑘𝐷 |
esumc.1 | ⊢ Ⅎ𝑘𝜑 |
esumc.2 | ⊢ Ⅎ𝑘𝐴 |
esumc.3 | ⊢ (𝑦 = 𝐶 → 𝐷 = 𝐵) |
esumc.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumc.5 | ⊢ (𝜑 → Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐶)) |
esumc.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumc.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
esumc | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumc.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | esumc.0 | . . 3 ⊢ Ⅎ𝑘𝐷 | |
3 | nfcv 2907 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
4 | nfre1 3239 | . . . 4 ⊢ Ⅎ𝑘∃𝑘 ∈ 𝐴 𝑧 = 𝐶 | |
5 | 4 | nfab 2913 | . . 3 ⊢ Ⅎ𝑘{𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} |
6 | esumc.2 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
7 | nfmpt1 5182 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐴 ↦ 𝐶) | |
8 | esumc.3 | . . 3 ⊢ (𝑦 = 𝐶 → 𝐷 = 𝐵) | |
9 | esumc.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
10 | elex 3450 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
12 | 6, 11 | abrexexd 30854 | . . 3 ⊢ (𝜑 → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} ∈ V) |
13 | esumc.7 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ 𝑊) | |
14 | 13 | ex 413 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 ∈ 𝑊)) |
15 | 1, 14 | ralrimi 3141 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ 𝑊) |
16 | 6 | fnmptf 6569 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐴 𝐶 ∈ 𝑊 → (𝑘 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
18 | esumc.5 | . . . 4 ⊢ (𝜑 → Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐶)) | |
19 | eqid 2738 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) | |
20 | 19 | rnmpt 5864 | . . . . 5 ⊢ ran (𝑘 ∈ 𝐴 ↦ 𝐶) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐶) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}) |
22 | dff1o2 6721 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→{𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} ↔ ((𝑘 ∈ 𝐴 ↦ 𝐶) Fn 𝐴 ∧ Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐶) ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐶) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶})) | |
23 | 17, 18, 21, 22 | syl3anbrc 1342 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→{𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}) |
24 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) | |
25 | 6 | fvmpt2f 6876 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ∧ 𝐶 ∈ 𝑊) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
26 | 24, 13, 25 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
27 | vex 3436 | . . . . . 6 ⊢ 𝑦 ∈ V | |
28 | eqeq1 2742 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑧 = 𝐶 ↔ 𝑦 = 𝐶)) | |
29 | 28 | rexbidv 3226 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (∃𝑘 ∈ 𝐴 𝑧 = 𝐶 ↔ ∃𝑘 ∈ 𝐴 𝑦 = 𝐶)) |
30 | 27, 29 | elab 3609 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} ↔ ∃𝑘 ∈ 𝐴 𝑦 = 𝐶) |
31 | 8 | reximi 3178 | . . . . 5 ⊢ (∃𝑘 ∈ 𝐴 𝑦 = 𝐶 → ∃𝑘 ∈ 𝐴 𝐷 = 𝐵) |
32 | 30, 31 | sylbi 216 | . . . 4 ⊢ (𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} → ∃𝑘 ∈ 𝐴 𝐷 = 𝐵) |
33 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑘(0[,]+∞) | |
34 | 2, 33 | nfel 2921 | . . . . . 6 ⊢ Ⅎ𝑘 𝐷 ∈ (0[,]+∞) |
35 | esumc.6 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
36 | eleq1 2826 | . . . . . . . 8 ⊢ (𝐷 = 𝐵 → (𝐷 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞))) | |
37 | 35, 36 | syl5ibrcom 246 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐷 = 𝐵 → 𝐷 ∈ (0[,]+∞))) |
38 | 37 | ex 413 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → (𝐷 = 𝐵 → 𝐷 ∈ (0[,]+∞)))) |
39 | 1, 34, 38 | rexlimd 3250 | . . . . 5 ⊢ (𝜑 → (∃𝑘 ∈ 𝐴 𝐷 = 𝐵 → 𝐷 ∈ (0[,]+∞))) |
40 | 39 | imp 407 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐷 = 𝐵) → 𝐷 ∈ (0[,]+∞)) |
41 | 32, 40 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}) → 𝐷 ∈ (0[,]+∞)) |
42 | 1, 2, 3, 5, 6, 7, 8, 12, 23, 26, 41 | esumf1o 32018 | . 2 ⊢ (𝜑 → Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}𝐷 = Σ*𝑘 ∈ 𝐴𝐵) |
43 | 42 | eqcomd 2744 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ↦ cmpt 5157 ◡ccnv 5588 ran crn 5590 Fun wfun 6427 Fn wfn 6428 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 0cc0 10871 +∞cpnf 11006 [,]cicc 13082 Σ*cesum 31995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-xadd 12849 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-tset 16981 df-ple 16982 df-ds 16984 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-ordt 17212 df-xrs 17213 df-ps 18284 df-tsr 18285 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-cntz 18923 df-cmn 19388 df-fbas 20594 df-fg 20595 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-ntr 22171 df-nei 22249 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-tsms 23278 df-esum 31996 |
This theorem is referenced by: esumrnmpt 32020 esum2dlem 32060 measvunilem 32180 omssubadd 32267 |
Copyright terms: Public domain | W3C validator |