Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumc | Structured version Visualization version GIF version |
Description: Convert from the collection form to the class-variable form of a sum. (Contributed by Thierry Arnoux, 10-May-2017.) |
Ref | Expression |
---|---|
esumc.0 | ⊢ Ⅎ𝑘𝐷 |
esumc.1 | ⊢ Ⅎ𝑘𝜑 |
esumc.2 | ⊢ Ⅎ𝑘𝐴 |
esumc.3 | ⊢ (𝑦 = 𝐶 → 𝐷 = 𝐵) |
esumc.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumc.5 | ⊢ (𝜑 → Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐶)) |
esumc.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumc.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
esumc | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumc.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | esumc.0 | . . 3 ⊢ Ⅎ𝑘𝐷 | |
3 | nfcv 2906 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
4 | nfre1 3234 | . . . 4 ⊢ Ⅎ𝑘∃𝑘 ∈ 𝐴 𝑧 = 𝐶 | |
5 | 4 | nfab 2912 | . . 3 ⊢ Ⅎ𝑘{𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} |
6 | esumc.2 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
7 | nfmpt1 5178 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐴 ↦ 𝐶) | |
8 | esumc.3 | . . 3 ⊢ (𝑦 = 𝐶 → 𝐷 = 𝐵) | |
9 | esumc.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
10 | elex 3440 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
12 | 6, 11 | abrexexd 30755 | . . 3 ⊢ (𝜑 → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} ∈ V) |
13 | esumc.7 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ 𝑊) | |
14 | 13 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 ∈ 𝑊)) |
15 | 1, 14 | ralrimi 3139 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ 𝑊) |
16 | 6 | fnmptf 6553 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐴 𝐶 ∈ 𝑊 → (𝑘 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
18 | esumc.5 | . . . 4 ⊢ (𝜑 → Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐶)) | |
19 | eqid 2738 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) | |
20 | 19 | rnmpt 5853 | . . . . 5 ⊢ ran (𝑘 ∈ 𝐴 ↦ 𝐶) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐶) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}) |
22 | dff1o2 6705 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→{𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} ↔ ((𝑘 ∈ 𝐴 ↦ 𝐶) Fn 𝐴 ∧ Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐶) ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐶) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶})) | |
23 | 17, 18, 21, 22 | syl3anbrc 1341 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→{𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}) |
24 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) | |
25 | 6 | fvmpt2f 6858 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ∧ 𝐶 ∈ 𝑊) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
26 | 24, 13, 25 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
27 | vex 3426 | . . . . . 6 ⊢ 𝑦 ∈ V | |
28 | eqeq1 2742 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑧 = 𝐶 ↔ 𝑦 = 𝐶)) | |
29 | 28 | rexbidv 3225 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (∃𝑘 ∈ 𝐴 𝑧 = 𝐶 ↔ ∃𝑘 ∈ 𝐴 𝑦 = 𝐶)) |
30 | 27, 29 | elab 3602 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} ↔ ∃𝑘 ∈ 𝐴 𝑦 = 𝐶) |
31 | 8 | reximi 3174 | . . . . 5 ⊢ (∃𝑘 ∈ 𝐴 𝑦 = 𝐶 → ∃𝑘 ∈ 𝐴 𝐷 = 𝐵) |
32 | 30, 31 | sylbi 216 | . . . 4 ⊢ (𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} → ∃𝑘 ∈ 𝐴 𝐷 = 𝐵) |
33 | nfcv 2906 | . . . . . . 7 ⊢ Ⅎ𝑘(0[,]+∞) | |
34 | 2, 33 | nfel 2920 | . . . . . 6 ⊢ Ⅎ𝑘 𝐷 ∈ (0[,]+∞) |
35 | esumc.6 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
36 | eleq1 2826 | . . . . . . . 8 ⊢ (𝐷 = 𝐵 → (𝐷 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞))) | |
37 | 35, 36 | syl5ibrcom 246 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐷 = 𝐵 → 𝐷 ∈ (0[,]+∞))) |
38 | 37 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → (𝐷 = 𝐵 → 𝐷 ∈ (0[,]+∞)))) |
39 | 1, 34, 38 | rexlimd 3245 | . . . . 5 ⊢ (𝜑 → (∃𝑘 ∈ 𝐴 𝐷 = 𝐵 → 𝐷 ∈ (0[,]+∞))) |
40 | 39 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐷 = 𝐵) → 𝐷 ∈ (0[,]+∞)) |
41 | 32, 40 | sylan2 592 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}) → 𝐷 ∈ (0[,]+∞)) |
42 | 1, 2, 3, 5, 6, 7, 8, 12, 23, 26, 41 | esumf1o 31918 | . 2 ⊢ (𝜑 → Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}𝐷 = Σ*𝑘 ∈ 𝐴𝐵) |
43 | 42 | eqcomd 2744 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ↦ cmpt 5153 ◡ccnv 5579 ran crn 5581 Fun wfun 6412 Fn wfn 6413 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 [,]cicc 13011 Σ*cesum 31895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-xadd 12778 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-tset 16907 df-ple 16908 df-ds 16910 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-ordt 17129 df-xrs 17130 df-ps 18199 df-tsr 18200 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-cntz 18838 df-cmn 19303 df-fbas 20507 df-fg 20508 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-ntr 22079 df-nei 22157 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-tsms 23186 df-esum 31896 |
This theorem is referenced by: esumrnmpt 31920 esum2dlem 31960 measvunilem 32080 omssubadd 32167 |
Copyright terms: Public domain | W3C validator |