| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumc | Structured version Visualization version GIF version | ||
| Description: Convert from the collection form to the class-variable form of a sum. (Contributed by Thierry Arnoux, 10-May-2017.) |
| Ref | Expression |
|---|---|
| esumc.0 | ⊢ Ⅎ𝑘𝐷 |
| esumc.1 | ⊢ Ⅎ𝑘𝜑 |
| esumc.2 | ⊢ Ⅎ𝑘𝐴 |
| esumc.3 | ⊢ (𝑦 = 𝐶 → 𝐷 = 𝐵) |
| esumc.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| esumc.5 | ⊢ (𝜑 → Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐶)) |
| esumc.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| esumc.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| esumc | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | esumc.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | esumc.0 | . . 3 ⊢ Ⅎ𝑘𝐷 | |
| 3 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
| 4 | nfre1 3263 | . . . 4 ⊢ Ⅎ𝑘∃𝑘 ∈ 𝐴 𝑧 = 𝐶 | |
| 5 | 4 | nfab 2898 | . . 3 ⊢ Ⅎ𝑘{𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} |
| 6 | esumc.2 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
| 7 | nfmpt1 5209 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐴 ↦ 𝐶) | |
| 8 | esumc.3 | . . 3 ⊢ (𝑦 = 𝐶 → 𝐷 = 𝐵) | |
| 9 | esumc.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 10 | elex 3471 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
| 12 | 6, 11 | abrexexd 32445 | . . 3 ⊢ (𝜑 → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} ∈ V) |
| 13 | esumc.7 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ 𝑊) | |
| 14 | 13 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 ∈ 𝑊)) |
| 15 | 1, 14 | ralrimi 3236 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ 𝑊) |
| 16 | 6 | fnmptf 6657 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐴 𝐶 ∈ 𝑊 → (𝑘 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
| 18 | esumc.5 | . . . 4 ⊢ (𝜑 → Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐶)) | |
| 19 | eqid 2730 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) | |
| 20 | 19 | rnmpt 5924 | . . . . 5 ⊢ ran (𝑘 ∈ 𝐴 ↦ 𝐶) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐶) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}) |
| 22 | dff1o2 6808 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→{𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} ↔ ((𝑘 ∈ 𝐴 ↦ 𝐶) Fn 𝐴 ∧ Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐶) ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐶) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶})) | |
| 23 | 17, 18, 21, 22 | syl3anbrc 1344 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→{𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}) |
| 24 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) | |
| 25 | 6 | fvmpt2f 6972 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ∧ 𝐶 ∈ 𝑊) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
| 26 | 24, 13, 25 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
| 27 | vex 3454 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 28 | eqeq1 2734 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑧 = 𝐶 ↔ 𝑦 = 𝐶)) | |
| 29 | 28 | rexbidv 3158 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (∃𝑘 ∈ 𝐴 𝑧 = 𝐶 ↔ ∃𝑘 ∈ 𝐴 𝑦 = 𝐶)) |
| 30 | 27, 29 | elab 3649 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} ↔ ∃𝑘 ∈ 𝐴 𝑦 = 𝐶) |
| 31 | 8 | reximi 3068 | . . . . 5 ⊢ (∃𝑘 ∈ 𝐴 𝑦 = 𝐶 → ∃𝑘 ∈ 𝐴 𝐷 = 𝐵) |
| 32 | 30, 31 | sylbi 217 | . . . 4 ⊢ (𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} → ∃𝑘 ∈ 𝐴 𝐷 = 𝐵) |
| 33 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑘(0[,]+∞) | |
| 34 | 2, 33 | nfel 2907 | . . . . . 6 ⊢ Ⅎ𝑘 𝐷 ∈ (0[,]+∞) |
| 35 | esumc.6 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 36 | eleq1 2817 | . . . . . . . 8 ⊢ (𝐷 = 𝐵 → (𝐷 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞))) | |
| 37 | 35, 36 | syl5ibrcom 247 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐷 = 𝐵 → 𝐷 ∈ (0[,]+∞))) |
| 38 | 37 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → (𝐷 = 𝐵 → 𝐷 ∈ (0[,]+∞)))) |
| 39 | 1, 34, 38 | rexlimd 3245 | . . . . 5 ⊢ (𝜑 → (∃𝑘 ∈ 𝐴 𝐷 = 𝐵 → 𝐷 ∈ (0[,]+∞))) |
| 40 | 39 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐷 = 𝐵) → 𝐷 ∈ (0[,]+∞)) |
| 41 | 32, 40 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}) → 𝐷 ∈ (0[,]+∞)) |
| 42 | 1, 2, 3, 5, 6, 7, 8, 12, 23, 26, 41 | esumf1o 34047 | . 2 ⊢ (𝜑 → Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}𝐷 = Σ*𝑘 ∈ 𝐴𝐵) |
| 43 | 42 | eqcomd 2736 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 {cab 2708 Ⅎwnfc 2877 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ↦ cmpt 5191 ◡ccnv 5640 ran crn 5642 Fun wfun 6508 Fn wfn 6509 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 0cc0 11075 +∞cpnf 11212 [,]cicc 13316 Σ*cesum 34024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-xadd 13080 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-tset 17246 df-ple 17247 df-ds 17249 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-ordt 17471 df-xrs 17472 df-ps 18532 df-tsr 18533 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-cntz 19256 df-cmn 19719 df-fbas 21268 df-fg 21269 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-ntr 22914 df-nei 22992 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-tsms 24021 df-esum 34025 |
| This theorem is referenced by: esumrnmpt 34049 esum2dlem 34089 measvunilem 34209 omssubadd 34298 |
| Copyright terms: Public domain | W3C validator |