Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumc | Structured version Visualization version GIF version |
Description: Convert from the collection form to the class-variable form of a sum. (Contributed by Thierry Arnoux, 10-May-2017.) |
Ref | Expression |
---|---|
esumc.0 | ⊢ Ⅎ𝑘𝐷 |
esumc.1 | ⊢ Ⅎ𝑘𝜑 |
esumc.2 | ⊢ Ⅎ𝑘𝐴 |
esumc.3 | ⊢ (𝑦 = 𝐶 → 𝐷 = 𝐵) |
esumc.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumc.5 | ⊢ (𝜑 → Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐶)) |
esumc.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumc.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
esumc | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumc.1 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | esumc.0 | . . 3 ⊢ Ⅎ𝑘𝐷 | |
3 | nfcv 2920 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
4 | nfre1 3231 | . . . 4 ⊢ Ⅎ𝑘∃𝑘 ∈ 𝐴 𝑧 = 𝐶 | |
5 | 4 | nfab 2926 | . . 3 ⊢ Ⅎ𝑘{𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} |
6 | esumc.2 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
7 | nfmpt1 5135 | . . 3 ⊢ Ⅎ𝑘(𝑘 ∈ 𝐴 ↦ 𝐶) | |
8 | esumc.3 | . . 3 ⊢ (𝑦 = 𝐶 → 𝐷 = 𝐵) | |
9 | esumc.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
10 | elex 3429 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
12 | 6, 11 | abrexexd 30391 | . . 3 ⊢ (𝜑 → {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} ∈ V) |
13 | esumc.7 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ 𝑊) | |
14 | 13 | ex 416 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 ∈ 𝑊)) |
15 | 1, 14 | ralrimi 3145 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ 𝑊) |
16 | 6 | fnmptf 6473 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐴 𝐶 ∈ 𝑊 → (𝑘 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
18 | esumc.5 | . . . 4 ⊢ (𝜑 → Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐶)) | |
19 | eqid 2759 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) | |
20 | 19 | rnmpt 5802 | . . . . 5 ⊢ ran (𝑘 ∈ 𝐴 ↦ 𝐶) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐶) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}) |
22 | dff1o2 6613 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→{𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} ↔ ((𝑘 ∈ 𝐴 ↦ 𝐶) Fn 𝐴 ∧ Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐶) ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐶) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶})) | |
23 | 17, 18, 21, 22 | syl3anbrc 1341 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→{𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}) |
24 | simpr 488 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) | |
25 | 6 | fvmpt2f 6766 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ∧ 𝐶 ∈ 𝑊) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
26 | 24, 13, 25 | syl2anc 587 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
27 | vex 3414 | . . . . . 6 ⊢ 𝑦 ∈ V | |
28 | eqeq1 2763 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑧 = 𝐶 ↔ 𝑦 = 𝐶)) | |
29 | 28 | rexbidv 3222 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (∃𝑘 ∈ 𝐴 𝑧 = 𝐶 ↔ ∃𝑘 ∈ 𝐴 𝑦 = 𝐶)) |
30 | 27, 29 | elab 3591 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} ↔ ∃𝑘 ∈ 𝐴 𝑦 = 𝐶) |
31 | 8 | reximi 3172 | . . . . 5 ⊢ (∃𝑘 ∈ 𝐴 𝑦 = 𝐶 → ∃𝑘 ∈ 𝐴 𝐷 = 𝐵) |
32 | 30, 31 | sylbi 220 | . . . 4 ⊢ (𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶} → ∃𝑘 ∈ 𝐴 𝐷 = 𝐵) |
33 | nfcv 2920 | . . . . . . 7 ⊢ Ⅎ𝑘(0[,]+∞) | |
34 | 2, 33 | nfel 2934 | . . . . . 6 ⊢ Ⅎ𝑘 𝐷 ∈ (0[,]+∞) |
35 | esumc.6 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
36 | eleq1 2840 | . . . . . . . 8 ⊢ (𝐷 = 𝐵 → (𝐷 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞))) | |
37 | 35, 36 | syl5ibrcom 250 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐷 = 𝐵 → 𝐷 ∈ (0[,]+∞))) |
38 | 37 | ex 416 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → (𝐷 = 𝐵 → 𝐷 ∈ (0[,]+∞)))) |
39 | 1, 34, 38 | rexlimd 3242 | . . . . 5 ⊢ (𝜑 → (∃𝑘 ∈ 𝐴 𝐷 = 𝐵 → 𝐷 ∈ (0[,]+∞))) |
40 | 39 | imp 410 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐷 = 𝐵) → 𝐷 ∈ (0[,]+∞)) |
41 | 32, 40 | sylan2 595 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}) → 𝐷 ∈ (0[,]+∞)) |
42 | 1, 2, 3, 5, 6, 7, 8, 12, 23, 26, 41 | esumf1o 31551 | . 2 ⊢ (𝜑 → Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}𝐷 = Σ*𝑘 ∈ 𝐴𝐵) |
43 | 42 | eqcomd 2765 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐶}𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2112 {cab 2736 Ⅎwnfc 2900 ∀wral 3071 ∃wrex 3072 Vcvv 3410 ↦ cmpt 5117 ◡ccnv 5528 ran crn 5530 Fun wfun 6335 Fn wfn 6336 –1-1-onto→wf1o 6340 ‘cfv 6341 (class class class)co 7157 0cc0 10589 +∞cpnf 10724 [,]cicc 12796 Σ*cesum 31528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-se 5489 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-isom 6350 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-1st 7700 df-2nd 7701 df-supp 7843 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-er 8306 df-map 8425 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-fsupp 8881 df-fi 8922 df-oi 9021 df-card 9415 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-nn 11689 df-2 11751 df-3 11752 df-4 11753 df-5 11754 df-6 11755 df-7 11756 df-8 11757 df-9 11758 df-n0 11949 df-z 12035 df-dec 12152 df-uz 12297 df-xadd 12563 df-icc 12800 df-fz 12954 df-fzo 13097 df-seq 13433 df-hash 13755 df-struct 16558 df-ndx 16559 df-slot 16560 df-base 16562 df-sets 16563 df-ress 16564 df-plusg 16651 df-mulr 16652 df-tset 16657 df-ple 16658 df-ds 16660 df-rest 16769 df-topn 16770 df-0g 16788 df-gsum 16789 df-topgen 16790 df-ordt 16847 df-xrs 16848 df-ps 17891 df-tsr 17892 df-mgm 17933 df-sgrp 17982 df-mnd 17993 df-submnd 18038 df-cntz 18529 df-cmn 18990 df-fbas 20178 df-fg 20179 df-top 21609 df-topon 21626 df-topsp 21648 df-bases 21661 df-ntr 21735 df-nei 21813 df-fil 22561 df-fm 22653 df-flim 22654 df-flf 22655 df-tsms 22842 df-esum 31529 |
This theorem is referenced by: esumrnmpt 31553 esum2dlem 31593 measvunilem 31713 omssubadd 31800 |
Copyright terms: Public domain | W3C validator |