Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumc Structured version   Visualization version   GIF version

Theorem esumc 34015
Description: Convert from the collection form to the class-variable form of a sum. (Contributed by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
esumc.0 𝑘𝐷
esumc.1 𝑘𝜑
esumc.2 𝑘𝐴
esumc.3 (𝑦 = 𝐶𝐷 = 𝐵)
esumc.4 (𝜑𝐴𝑉)
esumc.5 (𝜑 → Fun (𝑘𝐴𝐶))
esumc.6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumc.7 ((𝜑𝑘𝐴) → 𝐶𝑊)
Assertion
Ref Expression
esumc (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}𝐷)
Distinct variable groups:   𝑦,𝑘,𝑧   𝑦,𝐴,𝑧   𝑦,𝐵   𝑦,𝐶,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑘)   𝐴(𝑘)   𝐵(𝑧,𝑘)   𝐶(𝑘)   𝐷(𝑦,𝑧,𝑘)   𝑉(𝑦,𝑧,𝑘)   𝑊(𝑦,𝑧,𝑘)

Proof of Theorem esumc
StepHypRef Expression
1 esumc.1 . . 3 𝑘𝜑
2 esumc.0 . . 3 𝑘𝐷
3 nfcv 2908 . . 3 𝑦𝐵
4 nfre1 3291 . . . 4 𝑘𝑘𝐴 𝑧 = 𝐶
54nfab 2914 . . 3 𝑘{𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}
6 esumc.2 . . 3 𝑘𝐴
7 nfmpt1 5274 . . 3 𝑘(𝑘𝐴𝐶)
8 esumc.3 . . 3 (𝑦 = 𝐶𝐷 = 𝐵)
9 esumc.4 . . . . 5 (𝜑𝐴𝑉)
10 elex 3509 . . . . 5 (𝐴𝑉𝐴 ∈ V)
119, 10syl 17 . . . 4 (𝜑𝐴 ∈ V)
126, 11abrexexd 32537 . . 3 (𝜑 → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} ∈ V)
13 esumc.7 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶𝑊)
1413ex 412 . . . . . 6 (𝜑 → (𝑘𝐴𝐶𝑊))
151, 14ralrimi 3263 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶𝑊)
166fnmptf 6716 . . . . 5 (∀𝑘𝐴 𝐶𝑊 → (𝑘𝐴𝐶) Fn 𝐴)
1715, 16syl 17 . . . 4 (𝜑 → (𝑘𝐴𝐶) Fn 𝐴)
18 esumc.5 . . . 4 (𝜑 → Fun (𝑘𝐴𝐶))
19 eqid 2740 . . . . . 6 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
2019rnmpt 5980 . . . . 5 ran (𝑘𝐴𝐶) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}
2120a1i 11 . . . 4 (𝜑 → ran (𝑘𝐴𝐶) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶})
22 dff1o2 6867 . . . 4 ((𝑘𝐴𝐶):𝐴1-1-onto→{𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} ↔ ((𝑘𝐴𝐶) Fn 𝐴 ∧ Fun (𝑘𝐴𝐶) ∧ ran (𝑘𝐴𝐶) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}))
2317, 18, 21, 22syl3anbrc 1343 . . 3 (𝜑 → (𝑘𝐴𝐶):𝐴1-1-onto→{𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶})
24 simpr 484 . . . 4 ((𝜑𝑘𝐴) → 𝑘𝐴)
256fvmpt2f 7030 . . . 4 ((𝑘𝐴𝐶𝑊) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
2624, 13, 25syl2anc 583 . . 3 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
27 vex 3492 . . . . . 6 𝑦 ∈ V
28 eqeq1 2744 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 = 𝐶𝑦 = 𝐶))
2928rexbidv 3185 . . . . . 6 (𝑧 = 𝑦 → (∃𝑘𝐴 𝑧 = 𝐶 ↔ ∃𝑘𝐴 𝑦 = 𝐶))
3027, 29elab 3694 . . . . 5 (𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} ↔ ∃𝑘𝐴 𝑦 = 𝐶)
318reximi 3090 . . . . 5 (∃𝑘𝐴 𝑦 = 𝐶 → ∃𝑘𝐴 𝐷 = 𝐵)
3230, 31sylbi 217 . . . 4 (𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} → ∃𝑘𝐴 𝐷 = 𝐵)
33 nfcv 2908 . . . . . . 7 𝑘(0[,]+∞)
342, 33nfel 2923 . . . . . 6 𝑘 𝐷 ∈ (0[,]+∞)
35 esumc.6 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
36 eleq1 2832 . . . . . . . 8 (𝐷 = 𝐵 → (𝐷 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞)))
3735, 36syl5ibrcom 247 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐷 = 𝐵𝐷 ∈ (0[,]+∞)))
3837ex 412 . . . . . 6 (𝜑 → (𝑘𝐴 → (𝐷 = 𝐵𝐷 ∈ (0[,]+∞))))
391, 34, 38rexlimd 3272 . . . . 5 (𝜑 → (∃𝑘𝐴 𝐷 = 𝐵𝐷 ∈ (0[,]+∞)))
4039imp 406 . . . 4 ((𝜑 ∧ ∃𝑘𝐴 𝐷 = 𝐵) → 𝐷 ∈ (0[,]+∞))
4132, 40sylan2 592 . . 3 ((𝜑𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}) → 𝐷 ∈ (0[,]+∞))
421, 2, 3, 5, 6, 7, 8, 12, 23, 26, 41esumf1o 34014 . 2 (𝜑 → Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}𝐷 = Σ*𝑘𝐴𝐵)
4342eqcomd 2746 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  {cab 2717  wnfc 2893  wral 3067  wrex 3076  Vcvv 3488  cmpt 5249  ccnv 5699  ran crn 5701  Fun wfun 6567   Fn wfn 6568  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  0cc0 11184  +∞cpnf 11321  [,]cicc 13410  Σ*cesum 33991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-xadd 13176  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-tset 17330  df-ple 17331  df-ds 17333  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-ordt 17561  df-xrs 17562  df-ps 18636  df-tsr 18637  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-cntz 19357  df-cmn 19824  df-fbas 21384  df-fg 21385  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-ntr 23049  df-nei 23127  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-tsms 24156  df-esum 33992
This theorem is referenced by:  esumrnmpt  34016  esum2dlem  34056  measvunilem  34176  omssubadd  34265
  Copyright terms: Public domain W3C validator