Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumc Structured version   Visualization version   GIF version

Theorem esumc 34087
Description: Convert from the collection form to the class-variable form of a sum. (Contributed by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
esumc.0 𝑘𝐷
esumc.1 𝑘𝜑
esumc.2 𝑘𝐴
esumc.3 (𝑦 = 𝐶𝐷 = 𝐵)
esumc.4 (𝜑𝐴𝑉)
esumc.5 (𝜑 → Fun (𝑘𝐴𝐶))
esumc.6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumc.7 ((𝜑𝑘𝐴) → 𝐶𝑊)
Assertion
Ref Expression
esumc (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}𝐷)
Distinct variable groups:   𝑦,𝑘,𝑧   𝑦,𝐴,𝑧   𝑦,𝐵   𝑦,𝐶,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑘)   𝐴(𝑘)   𝐵(𝑧,𝑘)   𝐶(𝑘)   𝐷(𝑦,𝑧,𝑘)   𝑉(𝑦,𝑧,𝑘)   𝑊(𝑦,𝑧,𝑘)

Proof of Theorem esumc
StepHypRef Expression
1 esumc.1 . . 3 𝑘𝜑
2 esumc.0 . . 3 𝑘𝐷
3 nfcv 2899 . . 3 𝑦𝐵
4 nfre1 3271 . . . 4 𝑘𝑘𝐴 𝑧 = 𝐶
54nfab 2905 . . 3 𝑘{𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}
6 esumc.2 . . 3 𝑘𝐴
7 nfmpt1 5225 . . 3 𝑘(𝑘𝐴𝐶)
8 esumc.3 . . 3 (𝑦 = 𝐶𝐷 = 𝐵)
9 esumc.4 . . . . 5 (𝜑𝐴𝑉)
10 elex 3485 . . . . 5 (𝐴𝑉𝐴 ∈ V)
119, 10syl 17 . . . 4 (𝜑𝐴 ∈ V)
126, 11abrexexd 32495 . . 3 (𝜑 → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} ∈ V)
13 esumc.7 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶𝑊)
1413ex 412 . . . . . 6 (𝜑 → (𝑘𝐴𝐶𝑊))
151, 14ralrimi 3244 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶𝑊)
166fnmptf 6679 . . . . 5 (∀𝑘𝐴 𝐶𝑊 → (𝑘𝐴𝐶) Fn 𝐴)
1715, 16syl 17 . . . 4 (𝜑 → (𝑘𝐴𝐶) Fn 𝐴)
18 esumc.5 . . . 4 (𝜑 → Fun (𝑘𝐴𝐶))
19 eqid 2736 . . . . . 6 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
2019rnmpt 5942 . . . . 5 ran (𝑘𝐴𝐶) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}
2120a1i 11 . . . 4 (𝜑 → ran (𝑘𝐴𝐶) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶})
22 dff1o2 6828 . . . 4 ((𝑘𝐴𝐶):𝐴1-1-onto→{𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} ↔ ((𝑘𝐴𝐶) Fn 𝐴 ∧ Fun (𝑘𝐴𝐶) ∧ ran (𝑘𝐴𝐶) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}))
2317, 18, 21, 22syl3anbrc 1344 . . 3 (𝜑 → (𝑘𝐴𝐶):𝐴1-1-onto→{𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶})
24 simpr 484 . . . 4 ((𝜑𝑘𝐴) → 𝑘𝐴)
256fvmpt2f 6992 . . . 4 ((𝑘𝐴𝐶𝑊) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
2624, 13, 25syl2anc 584 . . 3 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
27 vex 3468 . . . . . 6 𝑦 ∈ V
28 eqeq1 2740 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 = 𝐶𝑦 = 𝐶))
2928rexbidv 3165 . . . . . 6 (𝑧 = 𝑦 → (∃𝑘𝐴 𝑧 = 𝐶 ↔ ∃𝑘𝐴 𝑦 = 𝐶))
3027, 29elab 3663 . . . . 5 (𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} ↔ ∃𝑘𝐴 𝑦 = 𝐶)
318reximi 3075 . . . . 5 (∃𝑘𝐴 𝑦 = 𝐶 → ∃𝑘𝐴 𝐷 = 𝐵)
3230, 31sylbi 217 . . . 4 (𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} → ∃𝑘𝐴 𝐷 = 𝐵)
33 nfcv 2899 . . . . . . 7 𝑘(0[,]+∞)
342, 33nfel 2914 . . . . . 6 𝑘 𝐷 ∈ (0[,]+∞)
35 esumc.6 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
36 eleq1 2823 . . . . . . . 8 (𝐷 = 𝐵 → (𝐷 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞)))
3735, 36syl5ibrcom 247 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐷 = 𝐵𝐷 ∈ (0[,]+∞)))
3837ex 412 . . . . . 6 (𝜑 → (𝑘𝐴 → (𝐷 = 𝐵𝐷 ∈ (0[,]+∞))))
391, 34, 38rexlimd 3253 . . . . 5 (𝜑 → (∃𝑘𝐴 𝐷 = 𝐵𝐷 ∈ (0[,]+∞)))
4039imp 406 . . . 4 ((𝜑 ∧ ∃𝑘𝐴 𝐷 = 𝐵) → 𝐷 ∈ (0[,]+∞))
4132, 40sylan2 593 . . 3 ((𝜑𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}) → 𝐷 ∈ (0[,]+∞))
421, 2, 3, 5, 6, 7, 8, 12, 23, 26, 41esumf1o 34086 . 2 (𝜑 → Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}𝐷 = Σ*𝑘𝐴𝐵)
4342eqcomd 2742 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  {cab 2714  wnfc 2884  wral 3052  wrex 3061  Vcvv 3464  cmpt 5206  ccnv 5658  ran crn 5660  Fun wfun 6530   Fn wfn 6531  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  0cc0 11134  +∞cpnf 11271  [,]cicc 13370  Σ*cesum 34063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-xadd 13134  df-icc 13374  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-tset 17295  df-ple 17296  df-ds 17298  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-ordt 17520  df-xrs 17521  df-ps 18581  df-tsr 18582  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-cntz 19305  df-cmn 19768  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-ntr 22963  df-nei 23041  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-tsms 24070  df-esum 34064
This theorem is referenced by:  esumrnmpt  34088  esum2dlem  34128  measvunilem  34248  omssubadd  34337
  Copyright terms: Public domain W3C validator