Proof of Theorem symgfixelsi
Step | Hyp | Ref
| Expression |
1 | | symgfixf.p |
. . . . 5
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) |
2 | | symgfixf.q |
. . . . 5
⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} |
3 | 1, 2 | symgfixelq 19041 |
. . . 4
⊢ (𝐹 ∈ 𝑄 → (𝐹 ∈ 𝑄 ↔ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾))) |
4 | | f1of1 6715 |
. . . . . . . . . 10
⊢ (𝐹:𝑁–1-1-onto→𝑁 → 𝐹:𝑁–1-1→𝑁) |
5 | 4 | ad2antrl 725 |
. . . . . . . . 9
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → 𝐹:𝑁–1-1→𝑁) |
6 | | difssd 4067 |
. . . . . . . . 9
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → (𝑁 ∖ {𝐾}) ⊆ 𝑁) |
7 | | f1ores 6730 |
. . . . . . . . 9
⊢ ((𝐹:𝑁–1-1→𝑁 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾}))) |
8 | 5, 6, 7 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾}))) |
9 | | symgfixf.d |
. . . . . . . . . . 11
⊢ 𝐷 = (𝑁 ∖ {𝐾}) |
10 | 9 | reseq2i 5888 |
. . . . . . . . . 10
⊢ (𝐹 ↾ 𝐷) = (𝐹 ↾ (𝑁 ∖ {𝐾})) |
11 | 10 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → (𝐹 ↾ 𝐷) = (𝐹 ↾ (𝑁 ∖ {𝐾}))) |
12 | 9 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → 𝐷 = (𝑁 ∖ {𝐾})) |
13 | | f1ofo 6723 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑁–1-1-onto→𝑁 → 𝐹:𝑁–onto→𝑁) |
14 | | foima 6693 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑁–onto→𝑁 → (𝐹 “ 𝑁) = 𝑁) |
15 | 14 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑁–onto→𝑁 → 𝑁 = (𝐹 “ 𝑁)) |
16 | 13, 15 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑁–1-1-onto→𝑁 → 𝑁 = (𝐹 “ 𝑁)) |
17 | 16 | ad2antrl 725 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → 𝑁 = (𝐹 “ 𝑁)) |
18 | | sneq 4571 |
. . . . . . . . . . . . . 14
⊢ (𝐾 = (𝐹‘𝐾) → {𝐾} = {(𝐹‘𝐾)}) |
19 | 18 | eqcoms 2746 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝐾) = 𝐾 → {𝐾} = {(𝐹‘𝐾)}) |
20 | 19 | ad2antll 726 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → {𝐾} = {(𝐹‘𝐾)}) |
21 | | f1ofn 6717 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑁–1-1-onto→𝑁 → 𝐹 Fn 𝑁) |
22 | 21 | ad2antrl 725 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → 𝐹 Fn 𝑁) |
23 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → 𝐾 ∈ 𝑁) |
24 | | fnsnfv 6847 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn 𝑁 ∧ 𝐾 ∈ 𝑁) → {(𝐹‘𝐾)} = (𝐹 “ {𝐾})) |
25 | 22, 23, 24 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → {(𝐹‘𝐾)} = (𝐹 “ {𝐾})) |
26 | 20, 25 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → {𝐾} = (𝐹 “ {𝐾})) |
27 | 17, 26 | difeq12d 4058 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → (𝑁 ∖ {𝐾}) = ((𝐹 “ 𝑁) ∖ (𝐹 “ {𝐾}))) |
28 | | dff1o2 6721 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑁–1-1-onto→𝑁 ↔ (𝐹 Fn 𝑁 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝑁)) |
29 | 28 | simp2bi 1145 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑁–1-1-onto→𝑁 → Fun ◡𝐹) |
30 | 29 | ad2antrl 725 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → Fun ◡𝐹) |
31 | | imadif 6518 |
. . . . . . . . . . 11
⊢ (Fun
◡𝐹 → (𝐹 “ (𝑁 ∖ {𝐾})) = ((𝐹 “ 𝑁) ∖ (𝐹 “ {𝐾}))) |
32 | 30, 31 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → (𝐹 “ (𝑁 ∖ {𝐾})) = ((𝐹 “ 𝑁) ∖ (𝐹 “ {𝐾}))) |
33 | 27, 12, 32 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → 𝐷 = (𝐹 “ (𝑁 ∖ {𝐾}))) |
34 | 11, 12, 33 | f1oeq123d 6710 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → ((𝐹 ↾ 𝐷):𝐷–1-1-onto→𝐷 ↔ (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾})))) |
35 | 8, 34 | mpbird 256 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝑁 ∧ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾)) → (𝐹 ↾ 𝐷):𝐷–1-1-onto→𝐷) |
36 | 35 | ancoms 459 |
. . . . . 6
⊢ (((𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾) ∧ 𝐾 ∈ 𝑁) → (𝐹 ↾ 𝐷):𝐷–1-1-onto→𝐷) |
37 | | symgfixf.s |
. . . . . . 7
⊢ 𝑆 =
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
38 | 1, 2, 37, 9 | symgfixels 19042 |
. . . . . 6
⊢ (𝐹 ∈ 𝑄 → ((𝐹 ↾ 𝐷) ∈ 𝑆 ↔ (𝐹 ↾ 𝐷):𝐷–1-1-onto→𝐷)) |
39 | 36, 38 | syl5ibr 245 |
. . . . 5
⊢ (𝐹 ∈ 𝑄 → (((𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾) ∧ 𝐾 ∈ 𝑁) → (𝐹 ↾ 𝐷) ∈ 𝑆)) |
40 | 39 | expd 416 |
. . . 4
⊢ (𝐹 ∈ 𝑄 → ((𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾) → (𝐾 ∈ 𝑁 → (𝐹 ↾ 𝐷) ∈ 𝑆))) |
41 | 3, 40 | sylbid 239 |
. . 3
⊢ (𝐹 ∈ 𝑄 → (𝐹 ∈ 𝑄 → (𝐾 ∈ 𝑁 → (𝐹 ↾ 𝐷) ∈ 𝑆))) |
42 | 41 | pm2.43i 52 |
. 2
⊢ (𝐹 ∈ 𝑄 → (𝐾 ∈ 𝑁 → (𝐹 ↾ 𝐷) ∈ 𝑆)) |
43 | 42 | impcom 408 |
1
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐹 ∈ 𝑄) → (𝐹 ↾ 𝐷) ∈ 𝑆) |