MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixelsi Structured version   Visualization version   GIF version

Theorem symgfixelsi 19139
Description: The restriction of a permutation fixing an element to the set with this element removed is an element of the restricted symmetric group. (Contributed by AV, 4-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgfixf.q 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
symgfixf.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgfixf.d 𝐷 = (𝑁 ∖ {𝐾})
Assertion
Ref Expression
symgfixelsi ((𝐾𝑁𝐹𝑄) → (𝐹𝐷) ∈ 𝑆)
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞
Allowed substitution hints:   𝐷(𝑞)   𝑄(𝑞)   𝑆(𝑞)   𝐹(𝑞)   𝑁(𝑞)

Proof of Theorem symgfixelsi
StepHypRef Expression
1 symgfixf.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
2 symgfixf.q . . . . 5 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
31, 2symgfixelq 19137 . . . 4 (𝐹𝑄 → (𝐹𝑄 ↔ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)))
4 f1of1 6766 . . . . . . . . . 10 (𝐹:𝑁1-1-onto𝑁𝐹:𝑁1-1𝑁)
54ad2antrl 725 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐹:𝑁1-1𝑁)
6 difssd 4079 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
7 f1ores 6781 . . . . . . . . 9 ((𝐹:𝑁1-1𝑁 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾})))
85, 6, 7syl2anc 584 . . . . . . . 8 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾})))
9 symgfixf.d . . . . . . . . . . 11 𝐷 = (𝑁 ∖ {𝐾})
109reseq2i 5920 . . . . . . . . . 10 (𝐹𝐷) = (𝐹 ↾ (𝑁 ∖ {𝐾}))
1110a1i 11 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹𝐷) = (𝐹 ↾ (𝑁 ∖ {𝐾})))
129a1i 11 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐷 = (𝑁 ∖ {𝐾}))
13 f1ofo 6774 . . . . . . . . . . . . 13 (𝐹:𝑁1-1-onto𝑁𝐹:𝑁onto𝑁)
14 foima 6744 . . . . . . . . . . . . . 14 (𝐹:𝑁onto𝑁 → (𝐹𝑁) = 𝑁)
1514eqcomd 2742 . . . . . . . . . . . . 13 (𝐹:𝑁onto𝑁𝑁 = (𝐹𝑁))
1613, 15syl 17 . . . . . . . . . . . 12 (𝐹:𝑁1-1-onto𝑁𝑁 = (𝐹𝑁))
1716ad2antrl 725 . . . . . . . . . . 11 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝑁 = (𝐹𝑁))
18 sneq 4583 . . . . . . . . . . . . . 14 (𝐾 = (𝐹𝐾) → {𝐾} = {(𝐹𝐾)})
1918eqcoms 2744 . . . . . . . . . . . . 13 ((𝐹𝐾) = 𝐾 → {𝐾} = {(𝐹𝐾)})
2019ad2antll 726 . . . . . . . . . . . 12 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → {𝐾} = {(𝐹𝐾)})
21 f1ofn 6768 . . . . . . . . . . . . . 14 (𝐹:𝑁1-1-onto𝑁𝐹 Fn 𝑁)
2221ad2antrl 725 . . . . . . . . . . . . 13 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐹 Fn 𝑁)
23 simpl 483 . . . . . . . . . . . . 13 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐾𝑁)
24 fnsnfv 6903 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑁𝐾𝑁) → {(𝐹𝐾)} = (𝐹 “ {𝐾}))
2522, 23, 24syl2anc 584 . . . . . . . . . . . 12 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → {(𝐹𝐾)} = (𝐹 “ {𝐾}))
2620, 25eqtrd 2776 . . . . . . . . . . 11 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → {𝐾} = (𝐹 “ {𝐾}))
2717, 26difeq12d 4070 . . . . . . . . . 10 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝑁 ∖ {𝐾}) = ((𝐹𝑁) ∖ (𝐹 “ {𝐾})))
28 dff1o2 6772 . . . . . . . . . . . . 13 (𝐹:𝑁1-1-onto𝑁 ↔ (𝐹 Fn 𝑁 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝑁))
2928simp2bi 1145 . . . . . . . . . . . 12 (𝐹:𝑁1-1-onto𝑁 → Fun 𝐹)
3029ad2antrl 725 . . . . . . . . . . 11 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → Fun 𝐹)
31 imadif 6568 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (𝑁 ∖ {𝐾})) = ((𝐹𝑁) ∖ (𝐹 “ {𝐾})))
3230, 31syl 17 . . . . . . . . . 10 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹 “ (𝑁 ∖ {𝐾})) = ((𝐹𝑁) ∖ (𝐹 “ {𝐾})))
3327, 12, 323eqtr4d 2786 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐷 = (𝐹 “ (𝑁 ∖ {𝐾})))
3411, 12, 33f1oeq123d 6761 . . . . . . . 8 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → ((𝐹𝐷):𝐷1-1-onto𝐷 ↔ (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾}))))
358, 34mpbird 256 . . . . . . 7 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹𝐷):𝐷1-1-onto𝐷)
3635ancoms 459 . . . . . 6 (((𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾) ∧ 𝐾𝑁) → (𝐹𝐷):𝐷1-1-onto𝐷)
37 symgfixf.s . . . . . . 7 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
381, 2, 37, 9symgfixels 19138 . . . . . 6 (𝐹𝑄 → ((𝐹𝐷) ∈ 𝑆 ↔ (𝐹𝐷):𝐷1-1-onto𝐷))
3936, 38syl5ibr 245 . . . . 5 (𝐹𝑄 → (((𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾) ∧ 𝐾𝑁) → (𝐹𝐷) ∈ 𝑆))
4039expd 416 . . . 4 (𝐹𝑄 → ((𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾) → (𝐾𝑁 → (𝐹𝐷) ∈ 𝑆)))
413, 40sylbid 239 . . 3 (𝐹𝑄 → (𝐹𝑄 → (𝐾𝑁 → (𝐹𝐷) ∈ 𝑆)))
4241pm2.43i 52 . 2 (𝐹𝑄 → (𝐾𝑁 → (𝐹𝐷) ∈ 𝑆))
4342impcom 408 1 ((𝐾𝑁𝐹𝑄) → (𝐹𝐷) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  {crab 3403  cdif 3895  wss 3898  {csn 4573  ccnv 5619  ran crn 5621  cres 5622  cima 5623  Fun wfun 6473   Fn wfn 6474  1-1wf1 6476  ontowfo 6477  1-1-ontowf1o 6478  cfv 6479  Basecbs 17009  SymGrpcsymg 19070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-uz 12684  df-fz 13341  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-tset 17078  df-efmnd 18604  df-symg 19071
This theorem is referenced by:  symgfixf  19140  psgnfix1  20909  psgndif  20913  copsgndif  20914  smadiadetlem3  21923
  Copyright terms: Public domain W3C validator