MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixelsi Structured version   Visualization version   GIF version

Theorem symgfixelsi 19365
Description: The restriction of a permutation fixing an element to the set with this element removed is an element of the restricted symmetric group. (Contributed by AV, 4-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgfixf.q 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
symgfixf.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgfixf.d 𝐷 = (𝑁 ∖ {𝐾})
Assertion
Ref Expression
symgfixelsi ((𝐾𝑁𝐹𝑄) → (𝐹𝐷) ∈ 𝑆)
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞
Allowed substitution hints:   𝐷(𝑞)   𝑄(𝑞)   𝑆(𝑞)   𝐹(𝑞)   𝑁(𝑞)

Proof of Theorem symgfixelsi
StepHypRef Expression
1 symgfixf.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
2 symgfixf.q . . . . 5 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
31, 2symgfixelq 19363 . . . 4 (𝐹𝑄 → (𝐹𝑄 ↔ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)))
4 f1of1 6799 . . . . . . . . . 10 (𝐹:𝑁1-1-onto𝑁𝐹:𝑁1-1𝑁)
54ad2antrl 728 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐹:𝑁1-1𝑁)
6 difssd 4100 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
7 f1ores 6814 . . . . . . . . 9 ((𝐹:𝑁1-1𝑁 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾})))
85, 6, 7syl2anc 584 . . . . . . . 8 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾})))
9 symgfixf.d . . . . . . . . . . 11 𝐷 = (𝑁 ∖ {𝐾})
109reseq2i 5947 . . . . . . . . . 10 (𝐹𝐷) = (𝐹 ↾ (𝑁 ∖ {𝐾}))
1110a1i 11 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹𝐷) = (𝐹 ↾ (𝑁 ∖ {𝐾})))
129a1i 11 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐷 = (𝑁 ∖ {𝐾}))
13 f1ofo 6807 . . . . . . . . . . . . 13 (𝐹:𝑁1-1-onto𝑁𝐹:𝑁onto𝑁)
14 foima 6777 . . . . . . . . . . . . . 14 (𝐹:𝑁onto𝑁 → (𝐹𝑁) = 𝑁)
1514eqcomd 2735 . . . . . . . . . . . . 13 (𝐹:𝑁onto𝑁𝑁 = (𝐹𝑁))
1613, 15syl 17 . . . . . . . . . . . 12 (𝐹:𝑁1-1-onto𝑁𝑁 = (𝐹𝑁))
1716ad2antrl 728 . . . . . . . . . . 11 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝑁 = (𝐹𝑁))
18 sneq 4599 . . . . . . . . . . . . . 14 (𝐾 = (𝐹𝐾) → {𝐾} = {(𝐹𝐾)})
1918eqcoms 2737 . . . . . . . . . . . . 13 ((𝐹𝐾) = 𝐾 → {𝐾} = {(𝐹𝐾)})
2019ad2antll 729 . . . . . . . . . . . 12 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → {𝐾} = {(𝐹𝐾)})
21 f1ofn 6801 . . . . . . . . . . . . . 14 (𝐹:𝑁1-1-onto𝑁𝐹 Fn 𝑁)
2221ad2antrl 728 . . . . . . . . . . . . 13 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐹 Fn 𝑁)
23 simpl 482 . . . . . . . . . . . . 13 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐾𝑁)
24 fnsnfv 6940 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑁𝐾𝑁) → {(𝐹𝐾)} = (𝐹 “ {𝐾}))
2522, 23, 24syl2anc 584 . . . . . . . . . . . 12 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → {(𝐹𝐾)} = (𝐹 “ {𝐾}))
2620, 25eqtrd 2764 . . . . . . . . . . 11 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → {𝐾} = (𝐹 “ {𝐾}))
2717, 26difeq12d 4090 . . . . . . . . . 10 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝑁 ∖ {𝐾}) = ((𝐹𝑁) ∖ (𝐹 “ {𝐾})))
28 dff1o2 6805 . . . . . . . . . . . . 13 (𝐹:𝑁1-1-onto𝑁 ↔ (𝐹 Fn 𝑁 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝑁))
2928simp2bi 1146 . . . . . . . . . . . 12 (𝐹:𝑁1-1-onto𝑁 → Fun 𝐹)
3029ad2antrl 728 . . . . . . . . . . 11 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → Fun 𝐹)
31 imadif 6600 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (𝑁 ∖ {𝐾})) = ((𝐹𝑁) ∖ (𝐹 “ {𝐾})))
3230, 31syl 17 . . . . . . . . . 10 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹 “ (𝑁 ∖ {𝐾})) = ((𝐹𝑁) ∖ (𝐹 “ {𝐾})))
3327, 12, 323eqtr4d 2774 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐷 = (𝐹 “ (𝑁 ∖ {𝐾})))
3411, 12, 33f1oeq123d 6794 . . . . . . . 8 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → ((𝐹𝐷):𝐷1-1-onto𝐷 ↔ (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾}))))
358, 34mpbird 257 . . . . . . 7 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹𝐷):𝐷1-1-onto𝐷)
3635ancoms 458 . . . . . 6 (((𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾) ∧ 𝐾𝑁) → (𝐹𝐷):𝐷1-1-onto𝐷)
37 symgfixf.s . . . . . . 7 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
381, 2, 37, 9symgfixels 19364 . . . . . 6 (𝐹𝑄 → ((𝐹𝐷) ∈ 𝑆 ↔ (𝐹𝐷):𝐷1-1-onto𝐷))
3936, 38imbitrrid 246 . . . . 5 (𝐹𝑄 → (((𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾) ∧ 𝐾𝑁) → (𝐹𝐷) ∈ 𝑆))
4039expd 415 . . . 4 (𝐹𝑄 → ((𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾) → (𝐾𝑁 → (𝐹𝐷) ∈ 𝑆)))
413, 40sylbid 240 . . 3 (𝐹𝑄 → (𝐹𝑄 → (𝐾𝑁 → (𝐹𝐷) ∈ 𝑆)))
4241pm2.43i 52 . 2 (𝐹𝑄 → (𝐾𝑁 → (𝐹𝐷) ∈ 𝑆))
4342impcom 407 1 ((𝐾𝑁𝐹𝑄) → (𝐹𝐷) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  cdif 3911  wss 3914  {csn 4589  ccnv 5637  ran crn 5639  cres 5640  cima 5641  Fun wfun 6505   Fn wfn 6506  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  Basecbs 17179  SymGrpcsymg 19299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-efmnd 18796  df-symg 19300
This theorem is referenced by:  symgfixf  19366  psgnfix1  21507  psgndif  21511  copsgndif  21512  smadiadetlem3  22555
  Copyright terms: Public domain W3C validator