MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixelsi Structured version   Visualization version   GIF version

Theorem symgfixelsi 19453
Description: The restriction of a permutation fixing an element to the set with this element removed is an element of the restricted symmetric group. (Contributed by AV, 4-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgfixf.q 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
symgfixf.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgfixf.d 𝐷 = (𝑁 ∖ {𝐾})
Assertion
Ref Expression
symgfixelsi ((𝐾𝑁𝐹𝑄) → (𝐹𝐷) ∈ 𝑆)
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞
Allowed substitution hints:   𝐷(𝑞)   𝑄(𝑞)   𝑆(𝑞)   𝐹(𝑞)   𝑁(𝑞)

Proof of Theorem symgfixelsi
StepHypRef Expression
1 symgfixf.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
2 symgfixf.q . . . . 5 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
31, 2symgfixelq 19451 . . . 4 (𝐹𝑄 → (𝐹𝑄 ↔ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)))
4 f1of1 6847 . . . . . . . . . 10 (𝐹:𝑁1-1-onto𝑁𝐹:𝑁1-1𝑁)
54ad2antrl 728 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐹:𝑁1-1𝑁)
6 difssd 4137 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
7 f1ores 6862 . . . . . . . . 9 ((𝐹:𝑁1-1𝑁 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾})))
85, 6, 7syl2anc 584 . . . . . . . 8 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾})))
9 symgfixf.d . . . . . . . . . . 11 𝐷 = (𝑁 ∖ {𝐾})
109reseq2i 5994 . . . . . . . . . 10 (𝐹𝐷) = (𝐹 ↾ (𝑁 ∖ {𝐾}))
1110a1i 11 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹𝐷) = (𝐹 ↾ (𝑁 ∖ {𝐾})))
129a1i 11 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐷 = (𝑁 ∖ {𝐾}))
13 f1ofo 6855 . . . . . . . . . . . . 13 (𝐹:𝑁1-1-onto𝑁𝐹:𝑁onto𝑁)
14 foima 6825 . . . . . . . . . . . . . 14 (𝐹:𝑁onto𝑁 → (𝐹𝑁) = 𝑁)
1514eqcomd 2743 . . . . . . . . . . . . 13 (𝐹:𝑁onto𝑁𝑁 = (𝐹𝑁))
1613, 15syl 17 . . . . . . . . . . . 12 (𝐹:𝑁1-1-onto𝑁𝑁 = (𝐹𝑁))
1716ad2antrl 728 . . . . . . . . . . 11 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝑁 = (𝐹𝑁))
18 sneq 4636 . . . . . . . . . . . . . 14 (𝐾 = (𝐹𝐾) → {𝐾} = {(𝐹𝐾)})
1918eqcoms 2745 . . . . . . . . . . . . 13 ((𝐹𝐾) = 𝐾 → {𝐾} = {(𝐹𝐾)})
2019ad2antll 729 . . . . . . . . . . . 12 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → {𝐾} = {(𝐹𝐾)})
21 f1ofn 6849 . . . . . . . . . . . . . 14 (𝐹:𝑁1-1-onto𝑁𝐹 Fn 𝑁)
2221ad2antrl 728 . . . . . . . . . . . . 13 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐹 Fn 𝑁)
23 simpl 482 . . . . . . . . . . . . 13 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐾𝑁)
24 fnsnfv 6988 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑁𝐾𝑁) → {(𝐹𝐾)} = (𝐹 “ {𝐾}))
2522, 23, 24syl2anc 584 . . . . . . . . . . . 12 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → {(𝐹𝐾)} = (𝐹 “ {𝐾}))
2620, 25eqtrd 2777 . . . . . . . . . . 11 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → {𝐾} = (𝐹 “ {𝐾}))
2717, 26difeq12d 4127 . . . . . . . . . 10 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝑁 ∖ {𝐾}) = ((𝐹𝑁) ∖ (𝐹 “ {𝐾})))
28 dff1o2 6853 . . . . . . . . . . . . 13 (𝐹:𝑁1-1-onto𝑁 ↔ (𝐹 Fn 𝑁 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝑁))
2928simp2bi 1147 . . . . . . . . . . . 12 (𝐹:𝑁1-1-onto𝑁 → Fun 𝐹)
3029ad2antrl 728 . . . . . . . . . . 11 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → Fun 𝐹)
31 imadif 6650 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (𝑁 ∖ {𝐾})) = ((𝐹𝑁) ∖ (𝐹 “ {𝐾})))
3230, 31syl 17 . . . . . . . . . 10 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹 “ (𝑁 ∖ {𝐾})) = ((𝐹𝑁) ∖ (𝐹 “ {𝐾})))
3327, 12, 323eqtr4d 2787 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐷 = (𝐹 “ (𝑁 ∖ {𝐾})))
3411, 12, 33f1oeq123d 6842 . . . . . . . 8 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → ((𝐹𝐷):𝐷1-1-onto𝐷 ↔ (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾}))))
358, 34mpbird 257 . . . . . . 7 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹𝐷):𝐷1-1-onto𝐷)
3635ancoms 458 . . . . . 6 (((𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾) ∧ 𝐾𝑁) → (𝐹𝐷):𝐷1-1-onto𝐷)
37 symgfixf.s . . . . . . 7 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
381, 2, 37, 9symgfixels 19452 . . . . . 6 (𝐹𝑄 → ((𝐹𝐷) ∈ 𝑆 ↔ (𝐹𝐷):𝐷1-1-onto𝐷))
3936, 38imbitrrid 246 . . . . 5 (𝐹𝑄 → (((𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾) ∧ 𝐾𝑁) → (𝐹𝐷) ∈ 𝑆))
4039expd 415 . . . 4 (𝐹𝑄 → ((𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾) → (𝐾𝑁 → (𝐹𝐷) ∈ 𝑆)))
413, 40sylbid 240 . . 3 (𝐹𝑄 → (𝐹𝑄 → (𝐾𝑁 → (𝐹𝐷) ∈ 𝑆)))
4241pm2.43i 52 . 2 (𝐹𝑄 → (𝐾𝑁 → (𝐹𝐷) ∈ 𝑆))
4342impcom 407 1 ((𝐾𝑁𝐹𝑄) → (𝐹𝐷) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  cdif 3948  wss 3951  {csn 4626  ccnv 5684  ran crn 5686  cres 5687  cima 5688  Fun wfun 6555   Fn wfn 6556  1-1wf1 6558  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  Basecbs 17247  SymGrpcsymg 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-tset 17316  df-efmnd 18882  df-symg 19387
This theorem is referenced by:  symgfixf  19454  psgnfix1  21616  psgndif  21620  copsgndif  21621  smadiadetlem3  22674
  Copyright terms: Public domain W3C validator