MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixelsi Structured version   Visualization version   GIF version

Theorem symgfixelsi 19043
Description: The restriction of a permutation fixing an element to the set with this element removed is an element of the restricted symmetric group. (Contributed by AV, 4-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgfixf.q 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
symgfixf.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgfixf.d 𝐷 = (𝑁 ∖ {𝐾})
Assertion
Ref Expression
symgfixelsi ((𝐾𝑁𝐹𝑄) → (𝐹𝐷) ∈ 𝑆)
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞
Allowed substitution hints:   𝐷(𝑞)   𝑄(𝑞)   𝑆(𝑞)   𝐹(𝑞)   𝑁(𝑞)

Proof of Theorem symgfixelsi
StepHypRef Expression
1 symgfixf.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
2 symgfixf.q . . . . 5 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
31, 2symgfixelq 19041 . . . 4 (𝐹𝑄 → (𝐹𝑄 ↔ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)))
4 f1of1 6715 . . . . . . . . . 10 (𝐹:𝑁1-1-onto𝑁𝐹:𝑁1-1𝑁)
54ad2antrl 725 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐹:𝑁1-1𝑁)
6 difssd 4067 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
7 f1ores 6730 . . . . . . . . 9 ((𝐹:𝑁1-1𝑁 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾})))
85, 6, 7syl2anc 584 . . . . . . . 8 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾})))
9 symgfixf.d . . . . . . . . . . 11 𝐷 = (𝑁 ∖ {𝐾})
109reseq2i 5888 . . . . . . . . . 10 (𝐹𝐷) = (𝐹 ↾ (𝑁 ∖ {𝐾}))
1110a1i 11 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹𝐷) = (𝐹 ↾ (𝑁 ∖ {𝐾})))
129a1i 11 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐷 = (𝑁 ∖ {𝐾}))
13 f1ofo 6723 . . . . . . . . . . . . 13 (𝐹:𝑁1-1-onto𝑁𝐹:𝑁onto𝑁)
14 foima 6693 . . . . . . . . . . . . . 14 (𝐹:𝑁onto𝑁 → (𝐹𝑁) = 𝑁)
1514eqcomd 2744 . . . . . . . . . . . . 13 (𝐹:𝑁onto𝑁𝑁 = (𝐹𝑁))
1613, 15syl 17 . . . . . . . . . . . 12 (𝐹:𝑁1-1-onto𝑁𝑁 = (𝐹𝑁))
1716ad2antrl 725 . . . . . . . . . . 11 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝑁 = (𝐹𝑁))
18 sneq 4571 . . . . . . . . . . . . . 14 (𝐾 = (𝐹𝐾) → {𝐾} = {(𝐹𝐾)})
1918eqcoms 2746 . . . . . . . . . . . . 13 ((𝐹𝐾) = 𝐾 → {𝐾} = {(𝐹𝐾)})
2019ad2antll 726 . . . . . . . . . . . 12 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → {𝐾} = {(𝐹𝐾)})
21 f1ofn 6717 . . . . . . . . . . . . . 14 (𝐹:𝑁1-1-onto𝑁𝐹 Fn 𝑁)
2221ad2antrl 725 . . . . . . . . . . . . 13 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐹 Fn 𝑁)
23 simpl 483 . . . . . . . . . . . . 13 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐾𝑁)
24 fnsnfv 6847 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑁𝐾𝑁) → {(𝐹𝐾)} = (𝐹 “ {𝐾}))
2522, 23, 24syl2anc 584 . . . . . . . . . . . 12 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → {(𝐹𝐾)} = (𝐹 “ {𝐾}))
2620, 25eqtrd 2778 . . . . . . . . . . 11 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → {𝐾} = (𝐹 “ {𝐾}))
2717, 26difeq12d 4058 . . . . . . . . . 10 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝑁 ∖ {𝐾}) = ((𝐹𝑁) ∖ (𝐹 “ {𝐾})))
28 dff1o2 6721 . . . . . . . . . . . . 13 (𝐹:𝑁1-1-onto𝑁 ↔ (𝐹 Fn 𝑁 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝑁))
2928simp2bi 1145 . . . . . . . . . . . 12 (𝐹:𝑁1-1-onto𝑁 → Fun 𝐹)
3029ad2antrl 725 . . . . . . . . . . 11 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → Fun 𝐹)
31 imadif 6518 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (𝑁 ∖ {𝐾})) = ((𝐹𝑁) ∖ (𝐹 “ {𝐾})))
3230, 31syl 17 . . . . . . . . . 10 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹 “ (𝑁 ∖ {𝐾})) = ((𝐹𝑁) ∖ (𝐹 “ {𝐾})))
3327, 12, 323eqtr4d 2788 . . . . . . . . 9 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → 𝐷 = (𝐹 “ (𝑁 ∖ {𝐾})))
3411, 12, 33f1oeq123d 6710 . . . . . . . 8 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → ((𝐹𝐷):𝐷1-1-onto𝐷 ↔ (𝐹 ↾ (𝑁 ∖ {𝐾})):(𝑁 ∖ {𝐾})–1-1-onto→(𝐹 “ (𝑁 ∖ {𝐾}))))
358, 34mpbird 256 . . . . . . 7 ((𝐾𝑁 ∧ (𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾)) → (𝐹𝐷):𝐷1-1-onto𝐷)
3635ancoms 459 . . . . . 6 (((𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾) ∧ 𝐾𝑁) → (𝐹𝐷):𝐷1-1-onto𝐷)
37 symgfixf.s . . . . . . 7 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
381, 2, 37, 9symgfixels 19042 . . . . . 6 (𝐹𝑄 → ((𝐹𝐷) ∈ 𝑆 ↔ (𝐹𝐷):𝐷1-1-onto𝐷))
3936, 38syl5ibr 245 . . . . 5 (𝐹𝑄 → (((𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾) ∧ 𝐾𝑁) → (𝐹𝐷) ∈ 𝑆))
4039expd 416 . . . 4 (𝐹𝑄 → ((𝐹:𝑁1-1-onto𝑁 ∧ (𝐹𝐾) = 𝐾) → (𝐾𝑁 → (𝐹𝐷) ∈ 𝑆)))
413, 40sylbid 239 . . 3 (𝐹𝑄 → (𝐹𝑄 → (𝐾𝑁 → (𝐹𝐷) ∈ 𝑆)))
4241pm2.43i 52 . 2 (𝐹𝑄 → (𝐾𝑁 → (𝐹𝐷) ∈ 𝑆))
4342impcom 408 1 ((𝐾𝑁𝐹𝑄) → (𝐹𝐷) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  cdif 3884  wss 3887  {csn 4561  ccnv 5588  ran crn 5590  cres 5591  cima 5592  Fun wfun 6427   Fn wfn 6428  1-1wf1 6430  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433  Basecbs 16912  SymGrpcsymg 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-efmnd 18508  df-symg 18975
This theorem is referenced by:  symgfixf  19044  psgnfix1  20803  psgndif  20807  copsgndif  20808  smadiadetlem3  21817
  Copyright terms: Public domain W3C validator