| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz7.49c | Structured version Visualization version GIF version | ||
| Description: Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.) |
| Ref | Expression |
|---|---|
| tz7.49c.1 | ⊢ 𝐹 Fn On |
| Ref | Expression |
|---|---|
| tz7.49c | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.49c.1 | . . 3 ⊢ 𝐹 Fn On | |
| 2 | biid 261 | . . 3 ⊢ (∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) | |
| 3 | 1, 2 | tz7.49 8416 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥))) |
| 4 | 3simpc 1150 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → ((𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥))) | |
| 5 | onss 7764 | . . . . . . . . 9 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) | |
| 6 | fnssres 6644 | . . . . . . . . 9 ⊢ ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝐹 ↾ 𝑥) Fn 𝑥) | |
| 7 | 1, 5, 6 | sylancr 587 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝐹 ↾ 𝑥) Fn 𝑥) |
| 8 | df-ima 5654 | . . . . . . . . . 10 ⊢ (𝐹 “ 𝑥) = ran (𝐹 ↾ 𝑥) | |
| 9 | 8 | eqeq1i 2735 | . . . . . . . . 9 ⊢ ((𝐹 “ 𝑥) = 𝐴 ↔ ran (𝐹 ↾ 𝑥) = 𝐴) |
| 10 | 9 | biimpi 216 | . . . . . . . 8 ⊢ ((𝐹 “ 𝑥) = 𝐴 → ran (𝐹 ↾ 𝑥) = 𝐴) |
| 11 | 7, 10 | anim12i 613 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ (𝐹 “ 𝑥) = 𝐴) → ((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴)) |
| 12 | 11 | anim1i 615 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ (𝐹 “ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥)) → (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥))) |
| 13 | dff1o2 6808 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 ↔ ((𝐹 ↾ 𝑥) Fn 𝑥 ∧ Fun ◡(𝐹 ↾ 𝑥) ∧ ran (𝐹 ↾ 𝑥) = 𝐴)) | |
| 14 | 3anan32 1096 | . . . . . . 7 ⊢ (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ Fun ◡(𝐹 ↾ 𝑥) ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ↔ (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥))) | |
| 15 | 13, 14 | bitri 275 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 ↔ (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥))) |
| 16 | 12, 15 | sylibr 234 | . . . . 5 ⊢ (((𝑥 ∈ On ∧ (𝐹 “ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
| 17 | 16 | expl 457 | . . . 4 ⊢ (𝑥 ∈ On → (((𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴)) |
| 18 | 4, 17 | syl5 34 | . . 3 ⊢ (𝑥 ∈ On → ((∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴)) |
| 19 | 18 | reximia 3065 | . 2 ⊢ (∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
| 20 | 3, 19 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 ◡ccnv 5640 ran crn 5642 ↾ cres 5643 “ cima 5644 Oncon0 6335 Fun wfun 6508 Fn wfn 6509 –1-1-onto→wf1o 6513 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 |
| This theorem is referenced by: dfac8alem 9989 dnnumch1 43040 |
| Copyright terms: Public domain | W3C validator |