MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.49c Structured version   Visualization version   GIF version

Theorem tz7.49c 8417
Description: Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.)
Hypothesis
Ref Expression
tz7.49c.1 𝐹 Fn On
Assertion
Ref Expression
tz7.49c ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem tz7.49c
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tz7.49c.1 . . 3 𝐹 Fn On
2 biid 261 . . 3 (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
31, 2tz7.49 8416 . 2 ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
4 3simpc 1150 . . . 4 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → ((𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
5 onss 7764 . . . . . . . . 9 (𝑥 ∈ On → 𝑥 ⊆ On)
6 fnssres 6644 . . . . . . . . 9 ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝐹𝑥) Fn 𝑥)
71, 5, 6sylancr 587 . . . . . . . 8 (𝑥 ∈ On → (𝐹𝑥) Fn 𝑥)
8 df-ima 5654 . . . . . . . . . 10 (𝐹𝑥) = ran (𝐹𝑥)
98eqeq1i 2735 . . . . . . . . 9 ((𝐹𝑥) = 𝐴 ↔ ran (𝐹𝑥) = 𝐴)
109biimpi 216 . . . . . . . 8 ((𝐹𝑥) = 𝐴 → ran (𝐹𝑥) = 𝐴)
117, 10anim12i 613 . . . . . . 7 ((𝑥 ∈ On ∧ (𝐹𝑥) = 𝐴) → ((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴))
1211anim1i 615 . . . . . 6 (((𝑥 ∈ On ∧ (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)) → (((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)))
13 dff1o2 6808 . . . . . . 7 ((𝐹𝑥):𝑥1-1-onto𝐴 ↔ ((𝐹𝑥) Fn 𝑥 ∧ Fun (𝐹𝑥) ∧ ran (𝐹𝑥) = 𝐴))
14 3anan32 1096 . . . . . . 7 (((𝐹𝑥) Fn 𝑥 ∧ Fun (𝐹𝑥) ∧ ran (𝐹𝑥) = 𝐴) ↔ (((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)))
1513, 14bitri 275 . . . . . 6 ((𝐹𝑥):𝑥1-1-onto𝐴 ↔ (((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)))
1612, 15sylibr 234 . . . . 5 (((𝑥 ∈ On ∧ (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)) → (𝐹𝑥):𝑥1-1-onto𝐴)
1716expl 457 . . . 4 (𝑥 ∈ On → (((𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → (𝐹𝑥):𝑥1-1-onto𝐴))
184, 17syl5 34 . . 3 (𝑥 ∈ On → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → (𝐹𝑥):𝑥1-1-onto𝐴))
1918reximia 3065 . 2 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
203, 19syl 17 1 ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  wss 3917  c0 4299  ccnv 5640  ran crn 5642  cres 5643  cima 5644  Oncon0 6335  Fun wfun 6508   Fn wfn 6509  1-1-ontowf1o 6513  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by:  dfac8alem  9989  dnnumch1  43040
  Copyright terms: Public domain W3C validator