MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.49c Structured version   Visualization version   GIF version

Theorem tz7.49c 8473
Description: Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.)
Hypothesis
Ref Expression
tz7.49c.1 𝐹 Fn On
Assertion
Ref Expression
tz7.49c ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem tz7.49c
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tz7.49c.1 . . 3 𝐹 Fn On
2 biid 260 . . 3 (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
31, 2tz7.49 8472 . 2 ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
4 3simpc 1147 . . . 4 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → ((𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
5 onss 7793 . . . . . . . . 9 (𝑥 ∈ On → 𝑥 ⊆ On)
6 fnssres 6683 . . . . . . . . 9 ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝐹𝑥) Fn 𝑥)
71, 5, 6sylancr 585 . . . . . . . 8 (𝑥 ∈ On → (𝐹𝑥) Fn 𝑥)
8 df-ima 5695 . . . . . . . . . 10 (𝐹𝑥) = ran (𝐹𝑥)
98eqeq1i 2733 . . . . . . . . 9 ((𝐹𝑥) = 𝐴 ↔ ran (𝐹𝑥) = 𝐴)
109biimpi 215 . . . . . . . 8 ((𝐹𝑥) = 𝐴 → ran (𝐹𝑥) = 𝐴)
117, 10anim12i 611 . . . . . . 7 ((𝑥 ∈ On ∧ (𝐹𝑥) = 𝐴) → ((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴))
1211anim1i 613 . . . . . 6 (((𝑥 ∈ On ∧ (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)) → (((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)))
13 dff1o2 6849 . . . . . . 7 ((𝐹𝑥):𝑥1-1-onto𝐴 ↔ ((𝐹𝑥) Fn 𝑥 ∧ Fun (𝐹𝑥) ∧ ran (𝐹𝑥) = 𝐴))
14 3anan32 1094 . . . . . . 7 (((𝐹𝑥) Fn 𝑥 ∧ Fun (𝐹𝑥) ∧ ran (𝐹𝑥) = 𝐴) ↔ (((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)))
1513, 14bitri 274 . . . . . 6 ((𝐹𝑥):𝑥1-1-onto𝐴 ↔ (((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)))
1612, 15sylibr 233 . . . . 5 (((𝑥 ∈ On ∧ (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)) → (𝐹𝑥):𝑥1-1-onto𝐴)
1716expl 456 . . . 4 (𝑥 ∈ On → (((𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → (𝐹𝑥):𝑥1-1-onto𝐴))
184, 17syl5 34 . . 3 (𝑥 ∈ On → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → (𝐹𝑥):𝑥1-1-onto𝐴))
1918reximia 3078 . 2 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
203, 19syl 17 1 ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wral 3058  wrex 3067  cdif 3946  wss 3949  c0 4326  ccnv 5681  ran crn 5683  cres 5684  cima 5685  Oncon0 6374  Fun wfun 6547   Fn wfn 6548  1-1-ontowf1o 6552  cfv 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561
This theorem is referenced by:  dfac8alem  10060  dnnumch1  42499
  Copyright terms: Public domain W3C validator