Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tz7.49c | Structured version Visualization version GIF version |
Description: Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.) |
Ref | Expression |
---|---|
tz7.49c.1 | ⊢ 𝐹 Fn On |
Ref | Expression |
---|---|
tz7.49c | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz7.49c.1 | . . 3 ⊢ 𝐹 Fn On | |
2 | biid 260 | . . 3 ⊢ (∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) | |
3 | 1, 2 | tz7.49 8246 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥))) |
4 | 3simpc 1148 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → ((𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥))) | |
5 | onss 7611 | . . . . . . . . 9 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) | |
6 | fnssres 6539 | . . . . . . . . 9 ⊢ ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝐹 ↾ 𝑥) Fn 𝑥) | |
7 | 1, 5, 6 | sylancr 586 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝐹 ↾ 𝑥) Fn 𝑥) |
8 | df-ima 5593 | . . . . . . . . . 10 ⊢ (𝐹 “ 𝑥) = ran (𝐹 ↾ 𝑥) | |
9 | 8 | eqeq1i 2743 | . . . . . . . . 9 ⊢ ((𝐹 “ 𝑥) = 𝐴 ↔ ran (𝐹 ↾ 𝑥) = 𝐴) |
10 | 9 | biimpi 215 | . . . . . . . 8 ⊢ ((𝐹 “ 𝑥) = 𝐴 → ran (𝐹 ↾ 𝑥) = 𝐴) |
11 | 7, 10 | anim12i 612 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ (𝐹 “ 𝑥) = 𝐴) → ((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴)) |
12 | 11 | anim1i 614 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ (𝐹 “ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥)) → (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥))) |
13 | dff1o2 6705 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 ↔ ((𝐹 ↾ 𝑥) Fn 𝑥 ∧ Fun ◡(𝐹 ↾ 𝑥) ∧ ran (𝐹 ↾ 𝑥) = 𝐴)) | |
14 | 3anan32 1095 | . . . . . . 7 ⊢ (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ Fun ◡(𝐹 ↾ 𝑥) ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ↔ (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥))) | |
15 | 13, 14 | bitri 274 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 ↔ (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥))) |
16 | 12, 15 | sylibr 233 | . . . . 5 ⊢ (((𝑥 ∈ On ∧ (𝐹 “ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
17 | 16 | expl 457 | . . . 4 ⊢ (𝑥 ∈ On → (((𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴)) |
18 | 4, 17 | syl5 34 | . . 3 ⊢ (𝑥 ∈ On → ((∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴)) |
19 | 18 | reximia 3172 | . 2 ⊢ (∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
20 | 3, 19 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 ◡ccnv 5579 ran crn 5581 ↾ cres 5582 “ cima 5583 Oncon0 6251 Fun wfun 6412 Fn wfn 6413 –1-1-onto→wf1o 6417 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: dfac8alem 9716 dnnumch1 40785 |
Copyright terms: Public domain | W3C validator |