MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.49c Structured version   Visualization version   GIF version

Theorem tz7.49c 8277
Description: Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.)
Hypothesis
Ref Expression
tz7.49c.1 𝐹 Fn On
Assertion
Ref Expression
tz7.49c ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem tz7.49c
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tz7.49c.1 . . 3 𝐹 Fn On
2 biid 260 . . 3 (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
31, 2tz7.49 8276 . 2 ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
4 3simpc 1149 . . . 4 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → ((𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
5 onss 7634 . . . . . . . . 9 (𝑥 ∈ On → 𝑥 ⊆ On)
6 fnssres 6555 . . . . . . . . 9 ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝐹𝑥) Fn 𝑥)
71, 5, 6sylancr 587 . . . . . . . 8 (𝑥 ∈ On → (𝐹𝑥) Fn 𝑥)
8 df-ima 5602 . . . . . . . . . 10 (𝐹𝑥) = ran (𝐹𝑥)
98eqeq1i 2743 . . . . . . . . 9 ((𝐹𝑥) = 𝐴 ↔ ran (𝐹𝑥) = 𝐴)
109biimpi 215 . . . . . . . 8 ((𝐹𝑥) = 𝐴 → ran (𝐹𝑥) = 𝐴)
117, 10anim12i 613 . . . . . . 7 ((𝑥 ∈ On ∧ (𝐹𝑥) = 𝐴) → ((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴))
1211anim1i 615 . . . . . 6 (((𝑥 ∈ On ∧ (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)) → (((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)))
13 dff1o2 6721 . . . . . . 7 ((𝐹𝑥):𝑥1-1-onto𝐴 ↔ ((𝐹𝑥) Fn 𝑥 ∧ Fun (𝐹𝑥) ∧ ran (𝐹𝑥) = 𝐴))
14 3anan32 1096 . . . . . . 7 (((𝐹𝑥) Fn 𝑥 ∧ Fun (𝐹𝑥) ∧ ran (𝐹𝑥) = 𝐴) ↔ (((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)))
1513, 14bitri 274 . . . . . 6 ((𝐹𝑥):𝑥1-1-onto𝐴 ↔ (((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)))
1612, 15sylibr 233 . . . . 5 (((𝑥 ∈ On ∧ (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)) → (𝐹𝑥):𝑥1-1-onto𝐴)
1716expl 458 . . . 4 (𝑥 ∈ On → (((𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → (𝐹𝑥):𝑥1-1-onto𝐴))
184, 17syl5 34 . . 3 (𝑥 ∈ On → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → (𝐹𝑥):𝑥1-1-onto𝐴))
1918reximia 3176 . 2 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
203, 19syl 17 1 ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cdif 3884  wss 3887  c0 4256  ccnv 5588  ran crn 5590  cres 5591  cima 5592  Oncon0 6266  Fun wfun 6427   Fn wfn 6428  1-1-ontowf1o 6432  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  dfac8alem  9785  dnnumch1  40869
  Copyright terms: Public domain W3C validator