![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz7.49c | Structured version Visualization version GIF version |
Description: Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.) |
Ref | Expression |
---|---|
tz7.49c.1 | ⊢ 𝐹 Fn On |
Ref | Expression |
---|---|
tz7.49c | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz7.49c.1 | . . 3 ⊢ 𝐹 Fn On | |
2 | biid 261 | . . 3 ⊢ (∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) | |
3 | 1, 2 | tz7.49 8501 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥))) |
4 | 3simpc 1150 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → ((𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥))) | |
5 | onss 7820 | . . . . . . . . 9 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) | |
6 | fnssres 6703 | . . . . . . . . 9 ⊢ ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝐹 ↾ 𝑥) Fn 𝑥) | |
7 | 1, 5, 6 | sylancr 586 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝐹 ↾ 𝑥) Fn 𝑥) |
8 | df-ima 5713 | . . . . . . . . . 10 ⊢ (𝐹 “ 𝑥) = ran (𝐹 ↾ 𝑥) | |
9 | 8 | eqeq1i 2745 | . . . . . . . . 9 ⊢ ((𝐹 “ 𝑥) = 𝐴 ↔ ran (𝐹 ↾ 𝑥) = 𝐴) |
10 | 9 | biimpi 216 | . . . . . . . 8 ⊢ ((𝐹 “ 𝑥) = 𝐴 → ran (𝐹 ↾ 𝑥) = 𝐴) |
11 | 7, 10 | anim12i 612 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ (𝐹 “ 𝑥) = 𝐴) → ((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴)) |
12 | 11 | anim1i 614 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ (𝐹 “ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥)) → (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥))) |
13 | dff1o2 6867 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 ↔ ((𝐹 ↾ 𝑥) Fn 𝑥 ∧ Fun ◡(𝐹 ↾ 𝑥) ∧ ran (𝐹 ↾ 𝑥) = 𝐴)) | |
14 | 3anan32 1097 | . . . . . . 7 ⊢ (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ Fun ◡(𝐹 ↾ 𝑥) ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ↔ (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥))) | |
15 | 13, 14 | bitri 275 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 ↔ (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥))) |
16 | 12, 15 | sylibr 234 | . . . . 5 ⊢ (((𝑥 ∈ On ∧ (𝐹 “ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
17 | 16 | expl 457 | . . . 4 ⊢ (𝑥 ∈ On → (((𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴)) |
18 | 4, 17 | syl5 34 | . . 3 ⊢ (𝑥 ∈ On → ((∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴)) |
19 | 18 | reximia 3087 | . 2 ⊢ (∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
20 | 3, 19 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 ◡ccnv 5699 ran crn 5701 ↾ cres 5702 “ cima 5703 Oncon0 6395 Fun wfun 6567 Fn wfn 6568 –1-1-onto→wf1o 6572 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: dfac8alem 10098 dnnumch1 43001 |
Copyright terms: Public domain | W3C validator |