MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.49c Structured version   Visualization version   GIF version

Theorem tz7.49c 8502
Description: Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.)
Hypothesis
Ref Expression
tz7.49c.1 𝐹 Fn On
Assertion
Ref Expression
tz7.49c ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem tz7.49c
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tz7.49c.1 . . 3 𝐹 Fn On
2 biid 261 . . 3 (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
31, 2tz7.49 8501 . 2 ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
4 3simpc 1150 . . . 4 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → ((𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
5 onss 7820 . . . . . . . . 9 (𝑥 ∈ On → 𝑥 ⊆ On)
6 fnssres 6703 . . . . . . . . 9 ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝐹𝑥) Fn 𝑥)
71, 5, 6sylancr 586 . . . . . . . 8 (𝑥 ∈ On → (𝐹𝑥) Fn 𝑥)
8 df-ima 5713 . . . . . . . . . 10 (𝐹𝑥) = ran (𝐹𝑥)
98eqeq1i 2745 . . . . . . . . 9 ((𝐹𝑥) = 𝐴 ↔ ran (𝐹𝑥) = 𝐴)
109biimpi 216 . . . . . . . 8 ((𝐹𝑥) = 𝐴 → ran (𝐹𝑥) = 𝐴)
117, 10anim12i 612 . . . . . . 7 ((𝑥 ∈ On ∧ (𝐹𝑥) = 𝐴) → ((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴))
1211anim1i 614 . . . . . 6 (((𝑥 ∈ On ∧ (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)) → (((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)))
13 dff1o2 6867 . . . . . . 7 ((𝐹𝑥):𝑥1-1-onto𝐴 ↔ ((𝐹𝑥) Fn 𝑥 ∧ Fun (𝐹𝑥) ∧ ran (𝐹𝑥) = 𝐴))
14 3anan32 1097 . . . . . . 7 (((𝐹𝑥) Fn 𝑥 ∧ Fun (𝐹𝑥) ∧ ran (𝐹𝑥) = 𝐴) ↔ (((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)))
1513, 14bitri 275 . . . . . 6 ((𝐹𝑥):𝑥1-1-onto𝐴 ↔ (((𝐹𝑥) Fn 𝑥 ∧ ran (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)))
1612, 15sylibr 234 . . . . 5 (((𝑥 ∈ On ∧ (𝐹𝑥) = 𝐴) ∧ Fun (𝐹𝑥)) → (𝐹𝑥):𝑥1-1-onto𝐴)
1716expl 457 . . . 4 (𝑥 ∈ On → (((𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → (𝐹𝑥):𝑥1-1-onto𝐴))
184, 17syl5 34 . . 3 (𝑥 ∈ On → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → (𝐹𝑥):𝑥1-1-onto𝐴))
1918reximia 3087 . 2 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
203, 19syl 17 1 ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  wss 3976  c0 4352  ccnv 5699  ran crn 5701  cres 5702  cima 5703  Oncon0 6395  Fun wfun 6567   Fn wfn 6568  1-1-ontowf1o 6572  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  dfac8alem  10098  dnnumch1  43001
  Copyright terms: Public domain W3C validator