![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz7.49c | Structured version Visualization version GIF version |
Description: Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.) |
Ref | Expression |
---|---|
tz7.49c.1 | ⊢ 𝐹 Fn On |
Ref | Expression |
---|---|
tz7.49c | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz7.49c.1 | . . 3 ⊢ 𝐹 Fn On | |
2 | biid 261 | . . 3 ⊢ (∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) | |
3 | 1, 2 | tz7.49 8451 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥))) |
4 | 3simpc 1149 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → ((𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥))) | |
5 | onss 7776 | . . . . . . . . 9 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) | |
6 | fnssres 6673 | . . . . . . . . 9 ⊢ ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝐹 ↾ 𝑥) Fn 𝑥) | |
7 | 1, 5, 6 | sylancr 586 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝐹 ↾ 𝑥) Fn 𝑥) |
8 | df-ima 5689 | . . . . . . . . . 10 ⊢ (𝐹 “ 𝑥) = ran (𝐹 ↾ 𝑥) | |
9 | 8 | eqeq1i 2736 | . . . . . . . . 9 ⊢ ((𝐹 “ 𝑥) = 𝐴 ↔ ran (𝐹 ↾ 𝑥) = 𝐴) |
10 | 9 | biimpi 215 | . . . . . . . 8 ⊢ ((𝐹 “ 𝑥) = 𝐴 → ran (𝐹 ↾ 𝑥) = 𝐴) |
11 | 7, 10 | anim12i 612 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ (𝐹 “ 𝑥) = 𝐴) → ((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴)) |
12 | 11 | anim1i 614 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ (𝐹 “ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥)) → (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥))) |
13 | dff1o2 6838 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 ↔ ((𝐹 ↾ 𝑥) Fn 𝑥 ∧ Fun ◡(𝐹 ↾ 𝑥) ∧ ran (𝐹 ↾ 𝑥) = 𝐴)) | |
14 | 3anan32 1096 | . . . . . . 7 ⊢ (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ Fun ◡(𝐹 ↾ 𝑥) ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ↔ (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥))) | |
15 | 13, 14 | bitri 275 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 ↔ (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥))) |
16 | 12, 15 | sylibr 233 | . . . . 5 ⊢ (((𝑥 ∈ On ∧ (𝐹 “ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
17 | 16 | expl 457 | . . . 4 ⊢ (𝑥 ∈ On → (((𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴)) |
18 | 4, 17 | syl5 34 | . . 3 ⊢ (𝑥 ∈ On → ((∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴)) |
19 | 18 | reximia 3080 | . 2 ⊢ (∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
20 | 3, 19 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 ∖ cdif 3945 ⊆ wss 3948 ∅c0 4322 ◡ccnv 5675 ran crn 5677 ↾ cres 5678 “ cima 5679 Oncon0 6364 Fun wfun 6537 Fn wfn 6538 –1-1-onto→wf1o 6542 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 |
This theorem is referenced by: dfac8alem 10030 dnnumch1 42251 |
Copyright terms: Public domain | W3C validator |