![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1mptrn | Structured version Visualization version GIF version |
Description: Express injection for a mapping operation. (Contributed by Thierry Arnoux, 3-May-2020.) |
Ref | Expression |
---|---|
f1mptrn.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
f1mptrn.2 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵) |
Ref | Expression |
---|---|
f1mptrn | ⊢ (𝜑 → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1mptrn.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | 1 | ralrimiva 3146 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
3 | f1mptrn.2 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵) | |
4 | 3 | ralrimiva 3146 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐶 ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵) |
5 | eqid 2732 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
6 | 5 | f1ompt 7112 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴–1-1-onto→𝐶 ↔ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵)) |
7 | dff1o2 6838 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴–1-1-onto→𝐶 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐶)) | |
8 | 7 | simp2bi 1146 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴–1-1-onto→𝐶 → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) |
9 | 6, 8 | sylbir 234 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵) → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) |
10 | 2, 4, 9 | syl2anc 584 | 1 ⊢ (𝜑 → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃!wreu 3374 ↦ cmpt 5231 ◡ccnv 5675 ran crn 5677 Fun wfun 6537 Fn wfn 6538 –1-1-onto→wf1o 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 |
This theorem is referenced by: esum2dlem 33376 |
Copyright terms: Public domain | W3C validator |