| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1mptrn | Structured version Visualization version GIF version | ||
| Description: Express injection for a mapping operation. (Contributed by Thierry Arnoux, 3-May-2020.) |
| Ref | Expression |
|---|---|
| f1mptrn.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| f1mptrn.2 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵) |
| Ref | Expression |
|---|---|
| f1mptrn | ⊢ (𝜑 → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1mptrn.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | 1 | ralrimiva 3132 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
| 3 | f1mptrn.2 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵) | |
| 4 | 3 | ralrimiva 3132 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐶 ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵) |
| 5 | eqid 2735 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | f1ompt 7101 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴–1-1-onto→𝐶 ↔ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵)) |
| 7 | dff1o2 6823 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴–1-1-onto→𝐶 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐶)) | |
| 8 | 7 | simp2bi 1146 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴–1-1-onto→𝐶 → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 9 | 6, 8 | sylbir 235 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵) → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 10 | 2, 4, 9 | syl2anc 584 | 1 ⊢ (𝜑 → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃!wreu 3357 ↦ cmpt 5201 ◡ccnv 5653 ran crn 5655 Fun wfun 6525 Fn wfn 6526 –1-1-onto→wf1o 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 |
| This theorem is referenced by: esum2dlem 34123 |
| Copyright terms: Public domain | W3C validator |