Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1mptrn Structured version   Visualization version   GIF version

Theorem f1mptrn 32592
Description: Express injection for a mapping operation. (Contributed by Thierry Arnoux, 3-May-2020.)
Hypotheses
Ref Expression
f1mptrn.1 ((𝜑𝑥𝐴) → 𝐵𝐶)
f1mptrn.2 ((𝜑𝑦𝐶) → ∃!𝑥𝐴 𝑦 = 𝐵)
Assertion
Ref Expression
f1mptrn (𝜑 → Fun (𝑥𝐴𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem f1mptrn
StepHypRef Expression
1 f1mptrn.1 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
21ralrimiva 3121 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
3 f1mptrn.2 . . 3 ((𝜑𝑦𝐶) → ∃!𝑥𝐴 𝑦 = 𝐵)
43ralrimiva 3121 . 2 (𝜑 → ∀𝑦𝐶 ∃!𝑥𝐴 𝑦 = 𝐵)
5 eqid 2729 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
65f1ompt 7049 . . 3 ((𝑥𝐴𝐵):𝐴1-1-onto𝐶 ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑦𝐶 ∃!𝑥𝐴 𝑦 = 𝐵))
7 dff1o2 6773 . . . 4 ((𝑥𝐴𝐵):𝐴1-1-onto𝐶 ↔ ((𝑥𝐴𝐵) Fn 𝐴 ∧ Fun (𝑥𝐴𝐵) ∧ ran (𝑥𝐴𝐵) = 𝐶))
87simp2bi 1146 . . 3 ((𝑥𝐴𝐵):𝐴1-1-onto𝐶 → Fun (𝑥𝐴𝐵))
96, 8sylbir 235 . 2 ((∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑦𝐶 ∃!𝑥𝐴 𝑦 = 𝐵) → Fun (𝑥𝐴𝐵))
102, 4, 9syl2anc 584 1 (𝜑 → Fun (𝑥𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3343  cmpt 5176  ccnv 5622  ran crn 5624  Fun wfun 6480   Fn wfn 6481  1-1-ontowf1o 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493
This theorem is referenced by:  esum2dlem  34058
  Copyright terms: Public domain W3C validator