| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1mptrn | Structured version Visualization version GIF version | ||
| Description: Express injection for a mapping operation. (Contributed by Thierry Arnoux, 3-May-2020.) |
| Ref | Expression |
|---|---|
| f1mptrn.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| f1mptrn.2 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵) |
| Ref | Expression |
|---|---|
| f1mptrn | ⊢ (𝜑 → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1mptrn.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | 1 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
| 3 | f1mptrn.2 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵) | |
| 4 | 3 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐶 ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵) |
| 5 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | f1ompt 7050 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴–1-1-onto→𝐶 ↔ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵)) |
| 7 | dff1o2 6773 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴–1-1-onto→𝐶 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐶)) | |
| 8 | 7 | simp2bi 1146 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴–1-1-onto→𝐶 → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 9 | 6, 8 | sylbir 235 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃!𝑥 ∈ 𝐴 𝑦 = 𝐵) → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 10 | 2, 4, 9 | syl2anc 584 | 1 ⊢ (𝜑 → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃!wreu 3345 ↦ cmpt 5174 ◡ccnv 5618 ran crn 5620 Fun wfun 6480 Fn wfn 6481 –1-1-onto→wf1o 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 |
| This theorem is referenced by: esum2dlem 34126 |
| Copyright terms: Public domain | W3C validator |