Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1mptrn Structured version   Visualization version   GIF version

Theorem f1mptrn 30970
Description: Express injection for a mapping operation. (Contributed by Thierry Arnoux, 3-May-2020.)
Hypotheses
Ref Expression
f1mptrn.1 ((𝜑𝑥𝐴) → 𝐵𝐶)
f1mptrn.2 ((𝜑𝑦𝐶) → ∃!𝑥𝐴 𝑦 = 𝐵)
Assertion
Ref Expression
f1mptrn (𝜑 → Fun (𝑥𝐴𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem f1mptrn
StepHypRef Expression
1 f1mptrn.1 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
21ralrimiva 3103 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
3 f1mptrn.2 . . 3 ((𝜑𝑦𝐶) → ∃!𝑥𝐴 𝑦 = 𝐵)
43ralrimiva 3103 . 2 (𝜑 → ∀𝑦𝐶 ∃!𝑥𝐴 𝑦 = 𝐵)
5 eqid 2738 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
65f1ompt 6985 . . 3 ((𝑥𝐴𝐵):𝐴1-1-onto𝐶 ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑦𝐶 ∃!𝑥𝐴 𝑦 = 𝐵))
7 dff1o2 6721 . . . 4 ((𝑥𝐴𝐵):𝐴1-1-onto𝐶 ↔ ((𝑥𝐴𝐵) Fn 𝐴 ∧ Fun (𝑥𝐴𝐵) ∧ ran (𝑥𝐴𝐵) = 𝐶))
87simp2bi 1145 . . 3 ((𝑥𝐴𝐵):𝐴1-1-onto𝐶 → Fun (𝑥𝐴𝐵))
96, 8sylbir 234 . 2 ((∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑦𝐶 ∃!𝑥𝐴 𝑦 = 𝐵) → Fun (𝑥𝐴𝐵))
102, 4, 9syl2anc 584 1 (𝜑 → Fun (𝑥𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  ∃!wreu 3066  cmpt 5157  ccnv 5588  ran crn 5590  Fun wfun 6427   Fn wfn 6428  1-1-ontowf1o 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440
This theorem is referenced by:  esum2dlem  32060
  Copyright terms: Public domain W3C validator