Step | Hyp | Ref
| Expression |
1 | | simp2 1136 |
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐵 ≠ ∅) |
2 | | n0 4280 |
. . 3
⊢ (𝐵 ≠ ∅ ↔
∃𝑤 𝑤 ∈ 𝐵) |
3 | 1, 2 | sylib 217 |
. 2
⊢ ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑤 𝑤 ∈ 𝐵) |
4 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑙 + 𝑥) = (𝑙 + 𝑤)) |
5 | 4 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → ((𝑙 + 𝑥) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑦)) |
6 | 5 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ↔ ∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦)) |
7 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑥 + 𝑟) = (𝑤 + 𝑟)) |
8 | 7 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑦)) |
9 | 8 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦 ↔ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦)) |
10 | 6, 9 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → ((∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) ↔ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦))) |
11 | 10 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦))) |
12 | 11 | rspcv 3557 |
. . . . . 6
⊢ (𝑤 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦))) |
13 | | eqeq2 2750 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → ((𝑙 + 𝑤) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑤)) |
14 | 13 | rexbidv 3226 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ↔ ∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑤)) |
15 | | eqeq2 2750 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → ((𝑤 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑤)) |
16 | 15 | rexbidv 3226 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦 ↔ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑤)) |
17 | 14, 16 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → ((∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦) ↔ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑤))) |
18 | 17 | rspcva 3559 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦)) → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑤)) |
19 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑢 → (𝑙 + 𝑤) = (𝑢 + 𝑤)) |
20 | 19 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑢 → ((𝑙 + 𝑤) = 𝑤 ↔ (𝑢 + 𝑤) = 𝑤)) |
21 | 20 | cbvrexvw 3384 |
. . . . . . . . . 10
⊢
(∃𝑙 ∈
𝐵 (𝑙 + 𝑤) = 𝑤 ↔ ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤) |
22 | 21 | biimpi 215 |
. . . . . . . . 9
⊢
(∃𝑙 ∈
𝐵 (𝑙 + 𝑤) = 𝑤 → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤) |
23 | 22 | adantr 481 |
. . . . . . . 8
⊢
((∃𝑙 ∈
𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑤) → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤) |
24 | 18, 23 | syl 17 |
. . . . . . 7
⊢ ((𝑤 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦)) → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤) |
25 | 24 | ex 413 |
. . . . . 6
⊢ (𝑤 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦) → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤)) |
26 | 12, 25 | syldc 48 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → (𝑤 ∈ 𝐵 → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤)) |
27 | 26 | 3ad2ant3 1134 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → (𝑤 ∈ 𝐵 → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤)) |
28 | 27 | imp 407 |
. . 3
⊢ (((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤) |
29 | | eqeq2 2750 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑎 → ((𝑙 + 𝑤) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑎)) |
30 | 29 | rexbidv 3226 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑎 → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ↔ ∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑎)) |
31 | | eqeq2 2750 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑎 → ((𝑤 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑎)) |
32 | 31 | rexbidv 3226 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑎 → (∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦 ↔ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎)) |
33 | 30, 32 | anbi12d 631 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → ((∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦) ↔ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑎 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎))) |
34 | 10, 33 | rspc2va 3571 |
. . . . . . . . . . . . 13
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑎 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎)) |
35 | 34 | simprd 496 |
. . . . . . . . . . . 12
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎) |
36 | 35 | expcom 414 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ((𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎)) |
37 | 36 | 3ad2ant3 1134 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ((𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎)) |
38 | 37 | impl 456 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎) |
39 | 38 | ad2ant2r 744 |
. . . . . . . 8
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎) |
40 | | oveq2 7283 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑧 → (𝑤 + 𝑟) = (𝑤 + 𝑧)) |
41 | 40 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑧 → ((𝑤 + 𝑟) = 𝑎 ↔ (𝑤 + 𝑧) = 𝑎)) |
42 | 41 | cbvrexvw 3384 |
. . . . . . . . . 10
⊢
(∃𝑟 ∈
𝐵 (𝑤 + 𝑟) = 𝑎 ↔ ∃𝑧 ∈ 𝐵 (𝑤 + 𝑧) = 𝑎) |
43 | | simpll1 1211 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝐺 ∈ Smgrp) |
44 | 43 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → 𝐺 ∈ Smgrp) |
45 | | simplr 766 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → 𝑢 ∈ 𝐵) |
46 | | simpllr 773 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
47 | | simprr 770 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
48 | | dfgrp3.b |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = (Base‘𝐺) |
49 | | dfgrp3.p |
. . . . . . . . . . . . . . . 16
⊢ + =
(+g‘𝐺) |
50 | 48, 49 | sgrpass 18381 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Smgrp ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑢 + (𝑤 + 𝑧))) |
51 | 44, 45, 46, 47, 50 | syl13anc 1371 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑢 + (𝑤 + 𝑧))) |
52 | | simprl 768 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → (𝑢 + 𝑤) = 𝑤) |
53 | 52 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑤 + 𝑧)) |
54 | 51, 53 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → (𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧)) |
55 | 54 | anassrs 468 |
. . . . . . . . . . . 12
⊢
((((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢 + 𝑤) = 𝑤) ∧ 𝑧 ∈ 𝐵) → (𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧)) |
56 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ ((𝑤 + 𝑧) = 𝑎 → (𝑢 + (𝑤 + 𝑧)) = (𝑢 + 𝑎)) |
57 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝑤 + 𝑧) = 𝑎 → (𝑤 + 𝑧) = 𝑎) |
58 | 56, 57 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ ((𝑤 + 𝑧) = 𝑎 → ((𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧) ↔ (𝑢 + 𝑎) = 𝑎)) |
59 | 55, 58 | syl5ibcom 244 |
. . . . . . . . . . 11
⊢
((((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢 + 𝑤) = 𝑤) ∧ 𝑧 ∈ 𝐵) → ((𝑤 + 𝑧) = 𝑎 → (𝑢 + 𝑎) = 𝑎)) |
60 | 59 | rexlimdva 3213 |
. . . . . . . . . 10
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢 + 𝑤) = 𝑤) → (∃𝑧 ∈ 𝐵 (𝑤 + 𝑧) = 𝑎 → (𝑢 + 𝑎) = 𝑎)) |
61 | 42, 60 | syl5bi 241 |
. . . . . . . . 9
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢 + 𝑤) = 𝑤) → (∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎 → (𝑢 + 𝑎) = 𝑎)) |
62 | 61 | adantrl 713 |
. . . . . . . 8
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → (∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎 → (𝑢 + 𝑎) = 𝑎)) |
63 | 39, 62 | mpd 15 |
. . . . . . 7
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → (𝑢 + 𝑎) = 𝑎) |
64 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → (𝑙 + 𝑥) = (𝑙 + 𝑎)) |
65 | 64 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → ((𝑙 + 𝑥) = 𝑦 ↔ (𝑙 + 𝑎) = 𝑦)) |
66 | 65 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ↔ ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑦)) |
67 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → (𝑥 + 𝑟) = (𝑎 + 𝑟)) |
68 | 67 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑎 + 𝑟) = 𝑦)) |
69 | 68 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦 ↔ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑦)) |
70 | 66, 69 | anbi12d 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → ((∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) ↔ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑦))) |
71 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑢 → ((𝑙 + 𝑎) = 𝑦 ↔ (𝑙 + 𝑎) = 𝑢)) |
72 | 71 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑢 → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑦 ↔ ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢)) |
73 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑢 → ((𝑎 + 𝑟) = 𝑦 ↔ (𝑎 + 𝑟) = 𝑢)) |
74 | 73 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑢 → (∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑦 ↔ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑢)) |
75 | 72, 74 | anbi12d 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑢 → ((∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑦) ↔ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢 ∧ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑢))) |
76 | 70, 75 | rspc2va 3571 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢 ∧ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑢)) |
77 | 76 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢) |
78 | 77 | ex 413 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢)) |
79 | 78 | ancoms 459 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢)) |
80 | 79 | com12 32 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ((𝑢 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢)) |
81 | 80 | 3ad2ant3 1134 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ((𝑢 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢)) |
82 | 81 | impl 456 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢) |
83 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑖 → (𝑙 + 𝑎) = (𝑖 + 𝑎)) |
84 | 83 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑖 → ((𝑙 + 𝑎) = 𝑢 ↔ (𝑖 + 𝑎) = 𝑢)) |
85 | 84 | cbvrexvw 3384 |
. . . . . . . . . 10
⊢
(∃𝑙 ∈
𝐵 (𝑙 + 𝑎) = 𝑢 ↔ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢) |
86 | 82, 85 | sylib 217 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢) |
87 | 86 | adantllr 716 |
. . . . . . . 8
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢) |
88 | 87 | adantrr 714 |
. . . . . . 7
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢) |
89 | 63, 88 | jca 512 |
. . . . . 6
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢)) |
90 | 89 | expr 457 |
. . . . 5
⊢
(((((𝐺 ∈ Smgrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → ((𝑢 + 𝑤) = 𝑤 → ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢))) |
91 | 90 | ralrimdva 3106 |
. . . 4
⊢ ((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ((𝑢 + 𝑤) = 𝑤 → ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢))) |
92 | 91 | reximdva 3203 |
. . 3
⊢ (((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) → (∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤 → ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢))) |
93 | 28, 92 | mpd 15 |
. 2
⊢ (((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢)) |
94 | 3, 93 | exlimddv 1938 |
1
⊢ ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢)) |