MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfgrp3lem Structured version   Visualization version   GIF version

Theorem dfgrp3lem 18845
Description: Lemma for dfgrp3 18846. (Contributed by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp3.b 𝐵 = (Base‘𝐺)
dfgrp3.p + = (+g𝐺)
Assertion
Ref Expression
dfgrp3lem ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
Distinct variable groups:   𝐵,𝑎,𝑖,𝑙,𝑟,𝑢,𝑥,𝑦   𝐺,𝑎,𝑖,𝑙,𝑟,𝑢,𝑥,𝑦   + ,𝑎,𝑖,𝑙,𝑟,𝑢,𝑥,𝑦

Proof of Theorem dfgrp3lem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . 3 ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐵 ≠ ∅)
2 n0 4306 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑤 𝑤𝐵)
31, 2sylib 217 . 2 ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑤 𝑤𝐵)
4 oveq2 7365 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑙 + 𝑥) = (𝑙 + 𝑤))
54eqeq1d 2738 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝑙 + 𝑥) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑦))
65rexbidv 3175 . . . . . . . . 9 (𝑥 = 𝑤 → (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ↔ ∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦))
7 oveq1 7364 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥 + 𝑟) = (𝑤 + 𝑟))
87eqeq1d 2738 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑦))
98rexbidv 3175 . . . . . . . . 9 (𝑥 = 𝑤 → (∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦 ↔ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦))
106, 9anbi12d 631 . . . . . . . 8 (𝑥 = 𝑤 → ((∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) ↔ (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦)))
1110ralbidv 3174 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) ↔ ∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦)))
1211rspcv 3577 . . . . . 6 (𝑤𝐵 → (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦)))
13 eqeq2 2748 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝑙 + 𝑤) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑤))
1413rexbidv 3175 . . . . . . . . . 10 (𝑦 = 𝑤 → (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ↔ ∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤))
15 eqeq2 2748 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝑤 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑤))
1615rexbidv 3175 . . . . . . . . . 10 (𝑦 = 𝑤 → (∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦 ↔ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑤))
1714, 16anbi12d 631 . . . . . . . . 9 (𝑦 = 𝑤 → ((∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦) ↔ (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑤)))
1817rspcva 3579 . . . . . . . 8 ((𝑤𝐵 ∧ ∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦)) → (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑤))
19 oveq1 7364 . . . . . . . . . . . 12 (𝑙 = 𝑢 → (𝑙 + 𝑤) = (𝑢 + 𝑤))
2019eqeq1d 2738 . . . . . . . . . . 11 (𝑙 = 𝑢 → ((𝑙 + 𝑤) = 𝑤 ↔ (𝑢 + 𝑤) = 𝑤))
2120cbvrexvw 3226 . . . . . . . . . 10 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤 ↔ ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤)
2221biimpi 215 . . . . . . . . 9 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤 → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤)
2322adantr 481 . . . . . . . 8 ((∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑤) → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤)
2418, 23syl 17 . . . . . . 7 ((𝑤𝐵 ∧ ∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦)) → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤)
2524ex 413 . . . . . 6 (𝑤𝐵 → (∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦) → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤))
2612, 25syldc 48 . . . . 5 (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → (𝑤𝐵 → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤))
27263ad2ant3 1135 . . . 4 ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → (𝑤𝐵 → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤))
2827imp 407 . . 3 (((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤)
29 eqeq2 2748 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎 → ((𝑙 + 𝑤) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑎))
3029rexbidv 3175 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ↔ ∃𝑙𝐵 (𝑙 + 𝑤) = 𝑎))
31 eqeq2 2748 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎 → ((𝑤 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑎))
3231rexbidv 3175 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦 ↔ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎))
3330, 32anbi12d 631 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → ((∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦) ↔ (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑎 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎)))
3410, 33rspc2va 3591 . . . . . . . . . . . . 13 (((𝑤𝐵𝑎𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑎 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎))
3534simprd 496 . . . . . . . . . . . 12 (((𝑤𝐵𝑎𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎)
3635expcom 414 . . . . . . . . . . 11 (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ((𝑤𝐵𝑎𝐵) → ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎))
37363ad2ant3 1135 . . . . . . . . . 10 ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ((𝑤𝐵𝑎𝐵) → ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎))
3837impl 456 . . . . . . . . 9 ((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑎𝐵) → ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎)
3938ad2ant2r 745 . . . . . . . 8 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑎𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎)
40 oveq2 7365 . . . . . . . . . . . 12 (𝑟 = 𝑧 → (𝑤 + 𝑟) = (𝑤 + 𝑧))
4140eqeq1d 2738 . . . . . . . . . . 11 (𝑟 = 𝑧 → ((𝑤 + 𝑟) = 𝑎 ↔ (𝑤 + 𝑧) = 𝑎))
4241cbvrexvw 3226 . . . . . . . . . 10 (∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎 ↔ ∃𝑧𝐵 (𝑤 + 𝑧) = 𝑎)
43 simpll1 1212 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) → 𝐺 ∈ Smgrp)
4443adantr 481 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → 𝐺 ∈ Smgrp)
45 simplr 767 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → 𝑢𝐵)
46 simpllr 774 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → 𝑤𝐵)
47 simprr 771 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → 𝑧𝐵)
48 dfgrp3.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐺)
49 dfgrp3.p . . . . . . . . . . . . . . . 16 + = (+g𝐺)
5048, 49sgrpass 18552 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Smgrp ∧ (𝑢𝐵𝑤𝐵𝑧𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑢 + (𝑤 + 𝑧)))
5144, 45, 46, 47, 50syl13anc 1372 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑢 + (𝑤 + 𝑧)))
52 simprl 769 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → (𝑢 + 𝑤) = 𝑤)
5352oveq1d 7372 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑤 + 𝑧))
5451, 53eqtr3d 2778 . . . . . . . . . . . . 13 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → (𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧))
5554anassrs 468 . . . . . . . . . . . 12 ((((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑢 + 𝑤) = 𝑤) ∧ 𝑧𝐵) → (𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧))
56 oveq2 7365 . . . . . . . . . . . . 13 ((𝑤 + 𝑧) = 𝑎 → (𝑢 + (𝑤 + 𝑧)) = (𝑢 + 𝑎))
57 id 22 . . . . . . . . . . . . 13 ((𝑤 + 𝑧) = 𝑎 → (𝑤 + 𝑧) = 𝑎)
5856, 57eqeq12d 2752 . . . . . . . . . . . 12 ((𝑤 + 𝑧) = 𝑎 → ((𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧) ↔ (𝑢 + 𝑎) = 𝑎))
5955, 58syl5ibcom 244 . . . . . . . . . . 11 ((((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑢 + 𝑤) = 𝑤) ∧ 𝑧𝐵) → ((𝑤 + 𝑧) = 𝑎 → (𝑢 + 𝑎) = 𝑎))
6059rexlimdva 3152 . . . . . . . . . 10 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑢 + 𝑤) = 𝑤) → (∃𝑧𝐵 (𝑤 + 𝑧) = 𝑎 → (𝑢 + 𝑎) = 𝑎))
6142, 60biimtrid 241 . . . . . . . . 9 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑢 + 𝑤) = 𝑤) → (∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎 → (𝑢 + 𝑎) = 𝑎))
6261adantrl 714 . . . . . . . 8 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑎𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → (∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎 → (𝑢 + 𝑎) = 𝑎))
6339, 62mpd 15 . . . . . . 7 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑎𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → (𝑢 + 𝑎) = 𝑎)
64 oveq2 7365 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑙 + 𝑥) = (𝑙 + 𝑎))
6564eqeq1d 2738 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑙 + 𝑥) = 𝑦 ↔ (𝑙 + 𝑎) = 𝑦))
6665rexbidv 3175 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ↔ ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑦))
67 oveq1 7364 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑥 + 𝑟) = (𝑎 + 𝑟))
6867eqeq1d 2738 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑎 + 𝑟) = 𝑦))
6968rexbidv 3175 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦 ↔ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑦))
7066, 69anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → ((∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) ↔ (∃𝑙𝐵 (𝑙 + 𝑎) = 𝑦 ∧ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑦)))
71 eqeq2 2748 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → ((𝑙 + 𝑎) = 𝑦 ↔ (𝑙 + 𝑎) = 𝑢))
7271rexbidv 3175 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (∃𝑙𝐵 (𝑙 + 𝑎) = 𝑦 ↔ ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢))
73 eqeq2 2748 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → ((𝑎 + 𝑟) = 𝑦 ↔ (𝑎 + 𝑟) = 𝑢))
7473rexbidv 3175 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (∃𝑟𝐵 (𝑎 + 𝑟) = 𝑦 ↔ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑢))
7572, 74anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → ((∃𝑙𝐵 (𝑙 + 𝑎) = 𝑦 ∧ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑦) ↔ (∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢 ∧ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑢)))
7670, 75rspc2va 3591 . . . . . . . . . . . . . . . 16 (((𝑎𝐵𝑢𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → (∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢 ∧ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑢))
7776simpld 495 . . . . . . . . . . . . . . 15 (((𝑎𝐵𝑢𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢)
7877ex 413 . . . . . . . . . . . . . 14 ((𝑎𝐵𝑢𝐵) → (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢))
7978ancoms 459 . . . . . . . . . . . . 13 ((𝑢𝐵𝑎𝐵) → (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢))
8079com12 32 . . . . . . . . . . . 12 (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ((𝑢𝐵𝑎𝐵) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢))
81803ad2ant3 1135 . . . . . . . . . . 11 ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ((𝑢𝐵𝑎𝐵) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢))
8281impl 456 . . . . . . . . . 10 ((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢)
83 oveq1 7364 . . . . . . . . . . . 12 (𝑙 = 𝑖 → (𝑙 + 𝑎) = (𝑖 + 𝑎))
8483eqeq1d 2738 . . . . . . . . . . 11 (𝑙 = 𝑖 → ((𝑙 + 𝑎) = 𝑢 ↔ (𝑖 + 𝑎) = 𝑢))
8584cbvrexvw 3226 . . . . . . . . . 10 (∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢 ↔ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)
8682, 85sylib 217 . . . . . . . . 9 ((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)
8786adantllr 717 . . . . . . . 8 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)
8887adantrr 715 . . . . . . 7 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑎𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)
8963, 88jca 512 . . . . . 6 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑎𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
9089expr 457 . . . . 5 (((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ((𝑢 + 𝑤) = 𝑤 → ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)))
9190ralrimdva 3151 . . . 4 ((((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) → ((𝑢 + 𝑤) = 𝑤 → ∀𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)))
9291reximdva 3165 . . 3 (((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) → (∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤 → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)))
9328, 92mpd 15 . 2 (((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
943, 93exlimddv 1938 1 ((𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  c0 4282  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  Smgrpcsgrp 18545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707  ax-nul 5263
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-iota 6448  df-fv 6504  df-ov 7360  df-sgrp 18546
This theorem is referenced by:  dfgrp3  18846
  Copyright terms: Public domain W3C validator