MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpnnncan2 Structured version   Visualization version   GIF version

Theorem grpnnncan2 18670
Description: Cancellation law for group subtraction. (nnncan2 11258 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
grpnnncan2.b 𝐵 = (Base‘𝐺)
grpnnncan2.m = (-g𝐺)
Assertion
Ref Expression
grpnnncan2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) (𝑌 𝑍)) = (𝑋 𝑌))

Proof of Theorem grpnnncan2
StepHypRef Expression
1 simpl 483 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
2 simpr1 1193 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
3 simpr3 1195 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
4 grpnnncan2.b . . . . 5 𝐵 = (Base‘𝐺)
5 grpnnncan2.m . . . . 5 = (-g𝐺)
64, 5grpsubcl 18653 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
763adant3r1 1181 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
8 eqid 2740 . . . 4 (+g𝐺) = (+g𝐺)
94, 8, 5grpsubsub4 18666 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 𝑍) ∈ 𝐵)) → ((𝑋 𝑍) (𝑌 𝑍)) = (𝑋 ((𝑌 𝑍)(+g𝐺)𝑍)))
101, 2, 3, 7, 9syl13anc 1371 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) (𝑌 𝑍)) = (𝑋 ((𝑌 𝑍)(+g𝐺)𝑍)))
114, 8, 5grpnpcan 18665 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → ((𝑌 𝑍)(+g𝐺)𝑍) = 𝑌)
12113adant3r1 1181 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍)(+g𝐺)𝑍) = 𝑌)
1312oveq2d 7287 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((𝑌 𝑍)(+g𝐺)𝑍)) = (𝑋 𝑌))
1410, 13eqtrd 2780 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) (𝑌 𝑍)) = (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  cfv 6432  (class class class)co 7271  Basecbs 16910  +gcplusg 16960  Grpcgrp 18575  -gcsg 18577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-1st 7824  df-2nd 7825  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-sbg 18580
This theorem is referenced by:  2idlcpbl  20503  nrmmetd  23728  ttgcontlem1  27250
  Copyright terms: Public domain W3C validator