MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpnnncan2 Structured version   Visualization version   GIF version

Theorem grpnnncan2 18190
Description: Cancellation law for group subtraction. (nnncan2 10917 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
grpnnncan2.b 𝐵 = (Base‘𝐺)
grpnnncan2.m = (-g𝐺)
Assertion
Ref Expression
grpnnncan2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) (𝑌 𝑍)) = (𝑋 𝑌))

Proof of Theorem grpnnncan2
StepHypRef Expression
1 simpl 485 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
2 simpr1 1190 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
3 simpr3 1192 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
4 grpnnncan2.b . . . . 5 𝐵 = (Base‘𝐺)
5 grpnnncan2.m . . . . 5 = (-g𝐺)
64, 5grpsubcl 18173 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
763adant3r1 1178 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
8 eqid 2821 . . . 4 (+g𝐺) = (+g𝐺)
94, 8, 5grpsubsub4 18186 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 𝑍) ∈ 𝐵)) → ((𝑋 𝑍) (𝑌 𝑍)) = (𝑋 ((𝑌 𝑍)(+g𝐺)𝑍)))
101, 2, 3, 7, 9syl13anc 1368 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) (𝑌 𝑍)) = (𝑋 ((𝑌 𝑍)(+g𝐺)𝑍)))
114, 8, 5grpnpcan 18185 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → ((𝑌 𝑍)(+g𝐺)𝑍) = 𝑌)
12113adant3r1 1178 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍)(+g𝐺)𝑍) = 𝑌)
1312oveq2d 7166 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((𝑌 𝑍)(+g𝐺)𝑍)) = (𝑋 𝑌))
1410, 13eqtrd 2856 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) (𝑌 𝑍)) = (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  cfv 6350  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  Grpcgrp 18097  -gcsg 18099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102
This theorem is referenced by:  2idlcpbl  20001  nrmmetd  23178  ttgcontlem1  26665
  Copyright terms: Public domain W3C validator