| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfpre2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the successor-predecessor. (Contributed by Peter Mazsa, 12-Jan-2026.) |
| Ref | Expression |
|---|---|
| dfpre2 | ⊢ (𝑁 ∈ 𝑉 → pre 𝑁 = (℩𝑚𝑚 SucMap 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpre 38499 | . 2 ⊢ pre 𝑁 = (℩𝑚𝑚 ∈ Pred( SucMap , V, 𝑁)) | |
| 2 | elpredg 6262 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑚 ∈ V) → (𝑚 ∈ Pred( SucMap , V, 𝑁) ↔ 𝑚 SucMap 𝑁)) | |
| 3 | 2 | elvd 3442 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑚 ∈ Pred( SucMap , V, 𝑁) ↔ 𝑚 SucMap 𝑁)) |
| 4 | 3 | iotabidv 6465 | . 2 ⊢ (𝑁 ∈ 𝑉 → (℩𝑚𝑚 ∈ Pred( SucMap , V, 𝑁)) = (℩𝑚𝑚 SucMap 𝑁)) |
| 5 | 1, 4 | eqtrid 2778 | 1 ⊢ (𝑁 ∈ 𝑉 → pre 𝑁 = (℩𝑚𝑚 SucMap 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 Predcpred 6247 ℩cio 6435 SucMap csucmap 38227 pre cpre 38229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-suc 6312 df-iota 6437 df-sucmap 38485 df-pre 38498 |
| This theorem is referenced by: dfpre3 38501 presucmap 38517 |
| Copyright terms: Public domain | W3C validator |