| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fincssdom | Structured version Visualization version GIF version | ||
| Description: In a chain of finite sets, dominance and subset coincide. (Contributed by Stefan O'Rear, 8-Nov-2014.) |
| Ref | Expression |
|---|---|
| fincssdom | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐴 ∈ Fin) | |
| 2 | simpr 484 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐵) | |
| 3 | simpl3 1194 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | |
| 4 | orel1 888 | . . . . . . . 8 ⊢ (¬ 𝐴 ⊆ 𝐵 → ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴)) | |
| 5 | 2, 3, 4 | sylc 65 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ 𝐴) |
| 6 | dfpss3 4055 | . . . . . . 7 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ 𝐵)) | |
| 7 | 5, 2, 6 | sylanbrc 583 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 ⊊ 𝐴) |
| 8 | php3 9179 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | |
| 9 | 1, 7, 8 | syl2anc 584 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 ≺ 𝐴) |
| 10 | 9 | ex 412 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (¬ 𝐴 ⊆ 𝐵 → 𝐵 ≺ 𝐴)) |
| 11 | domnsym 9073 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
| 12 | 11 | con2i 139 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐴 ≼ 𝐵) |
| 13 | 10, 12 | syl6 35 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (¬ 𝐴 ⊆ 𝐵 → ¬ 𝐴 ≼ 𝐵)) |
| 14 | 13 | con4d 115 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 15 | ssdomg 8974 | . . 3 ⊢ (𝐵 ∈ Fin → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
| 16 | 15 | 3ad2ant2 1134 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| 17 | 14, 16 | impbid 212 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3917 ⊊ wpss 3918 class class class wbr 5110 ≼ cdom 8919 ≺ csdm 8920 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 |
| This theorem is referenced by: fin1a2lem11 10370 |
| Copyright terms: Public domain | W3C validator |