| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fincssdom | Structured version Visualization version GIF version | ||
| Description: In a chain of finite sets, dominance and subset coincide. (Contributed by Stefan O'Rear, 8-Nov-2014.) |
| Ref | Expression |
|---|---|
| fincssdom | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1191 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐴 ∈ Fin) | |
| 2 | simpr 484 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐵) | |
| 3 | simpl3 1193 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | |
| 4 | orel1 888 | . . . . . . . 8 ⊢ (¬ 𝐴 ⊆ 𝐵 → ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴)) | |
| 5 | 2, 3, 4 | sylc 65 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ 𝐴) |
| 6 | dfpss3 4069 | . . . . . . 7 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ 𝐵)) | |
| 7 | 5, 2, 6 | sylanbrc 583 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 ⊊ 𝐴) |
| 8 | php3 9231 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | |
| 9 | 1, 7, 8 | syl2anc 584 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 ≺ 𝐴) |
| 10 | 9 | ex 412 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (¬ 𝐴 ⊆ 𝐵 → 𝐵 ≺ 𝐴)) |
| 11 | domnsym 9121 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
| 12 | 11 | con2i 139 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐴 ≼ 𝐵) |
| 13 | 10, 12 | syl6 35 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (¬ 𝐴 ⊆ 𝐵 → ¬ 𝐴 ≼ 𝐵)) |
| 14 | 13 | con4d 115 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 15 | ssdomg 9022 | . . 3 ⊢ (𝐵 ∈ Fin → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
| 16 | 15 | 3ad2ant2 1134 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| 17 | 14, 16 | impbid 212 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2107 ⊆ wss 3931 ⊊ wpss 3932 class class class wbr 5123 ≼ cdom 8965 ≺ csdm 8966 Fincfn 8967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-om 7870 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 |
| This theorem is referenced by: fin1a2lem11 10432 |
| Copyright terms: Public domain | W3C validator |