![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fincssdom | Structured version Visualization version GIF version |
Description: In a chain of finite sets, dominance and subset coincide. (Contributed by Stefan O'Rear, 8-Nov-2014.) |
Ref | Expression |
---|---|
fincssdom | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1227 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐴 ∈ Fin) | |
2 | simpr 471 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐵) | |
3 | simpl3 1231 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | |
4 | orel1 875 | . . . . . . . 8 ⊢ (¬ 𝐴 ⊆ 𝐵 → ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴)) | |
5 | 2, 3, 4 | sylc 65 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ 𝐴) |
6 | dfpss3 3843 | . . . . . . 7 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ 𝐵)) | |
7 | 5, 2, 6 | sylanbrc 572 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 ⊊ 𝐴) |
8 | php3 8305 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | |
9 | 1, 7, 8 | syl2anc 573 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 ≺ 𝐴) |
10 | 9 | ex 397 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (¬ 𝐴 ⊆ 𝐵 → 𝐵 ≺ 𝐴)) |
11 | domnsym 8245 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
12 | 11 | con2i 136 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐴 ≼ 𝐵) |
13 | 10, 12 | syl6 35 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (¬ 𝐴 ⊆ 𝐵 → ¬ 𝐴 ≼ 𝐵)) |
14 | 13 | con4d 115 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵)) |
15 | ssdomg 8158 | . . 3 ⊢ (𝐵 ∈ Fin → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
16 | 15 | 3ad2ant2 1128 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
17 | 14, 16 | impbid 202 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∨ wo 836 ∧ w3a 1071 ∈ wcel 2145 ⊆ wss 3723 ⊊ wpss 3724 class class class wbr 4787 ≼ cdom 8110 ≺ csdm 8111 Fincfn 8112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7099 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-om 7216 df-er 7899 df-en 8113 df-dom 8114 df-sdom 8115 df-fin 8116 |
This theorem is referenced by: fin1a2lem11 9437 |
Copyright terms: Public domain | W3C validator |