Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fincssdom | Structured version Visualization version GIF version |
Description: In a chain of finite sets, dominance and subset coincide. (Contributed by Stefan O'Rear, 8-Nov-2014.) |
Ref | Expression |
---|---|
fincssdom | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1193 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐴 ∈ Fin) | |
2 | simpr 488 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐵) | |
3 | simpl3 1195 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | |
4 | orel1 889 | . . . . . . . 8 ⊢ (¬ 𝐴 ⊆ 𝐵 → ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴)) | |
5 | 2, 3, 4 | sylc 65 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ 𝐴) |
6 | dfpss3 4016 | . . . . . . 7 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ 𝐵)) | |
7 | 5, 2, 6 | sylanbrc 586 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 ⊊ 𝐴) |
8 | php3 8855 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | |
9 | 1, 7, 8 | syl2anc 587 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 ≺ 𝐴) |
10 | 9 | ex 416 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (¬ 𝐴 ⊆ 𝐵 → 𝐵 ≺ 𝐴)) |
11 | domnsym 8795 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
12 | 11 | con2i 141 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐴 ≼ 𝐵) |
13 | 10, 12 | syl6 35 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (¬ 𝐴 ⊆ 𝐵 → ¬ 𝐴 ≼ 𝐵)) |
14 | 13 | con4d 115 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵)) |
15 | ssdomg 8697 | . . 3 ⊢ (𝐵 ∈ Fin → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
16 | 15 | 3ad2ant2 1136 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
17 | 14, 16 | impbid 215 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 847 ∧ w3a 1089 ∈ wcel 2111 ⊆ wss 3881 ⊊ wpss 3882 class class class wbr 5068 ≼ cdom 8645 ≺ csdm 8646 Fincfn 8647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3423 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-br 5069 df-opab 5131 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-om 7664 df-er 8412 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 |
This theorem is referenced by: fin1a2lem11 10049 |
Copyright terms: Public domain | W3C validator |