MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressval3d Structured version   Visualization version   GIF version

Theorem ressval3d 16956
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 3-Jul-2022.) (Proof shortened by AV, 17-Oct-2024.)
Hypotheses
Ref Expression
ressval3d.r 𝑅 = (𝑆s 𝐴)
ressval3d.b 𝐵 = (Base‘𝑆)
ressval3d.e 𝐸 = (Base‘ndx)
ressval3d.s (𝜑𝑆𝑉)
ressval3d.f (𝜑 → Fun 𝑆)
ressval3d.d (𝜑𝐸 ∈ dom 𝑆)
ressval3d.u (𝜑𝐴𝐵)
Assertion
Ref Expression
ressval3d (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))

Proof of Theorem ressval3d
StepHypRef Expression
1 ressval3d.u . 2 (𝜑𝐴𝐵)
2 sspss 4034 . . . 4 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
3 dfpss3 4021 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
43orbi1i 911 . . . 4 ((𝐴𝐵𝐴 = 𝐵) ↔ ((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∨ 𝐴 = 𝐵))
52, 4bitri 274 . . 3 (𝐴𝐵 ↔ ((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∨ 𝐴 = 𝐵))
6 simplr 766 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → ¬ 𝐵𝐴)
7 ressval3d.s . . . . . . . 8 (𝜑𝑆𝑉)
87adantl 482 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝑆𝑉)
9 simpl 483 . . . . . . . 8 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) → 𝐴𝐵)
10 ressval3d.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
1110fvexi 6788 . . . . . . . . 9 𝐵 ∈ V
1211a1i 11 . . . . . . . 8 (𝜑𝐵 ∈ V)
13 ssexg 5247 . . . . . . . 8 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
149, 12, 13syl2an 596 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝐴 ∈ V)
15 ressval3d.r . . . . . . . 8 𝑅 = (𝑆s 𝐴)
1615, 10ressval2 16946 . . . . . . 7 ((¬ 𝐵𝐴𝑆𝑉𝐴 ∈ V) → 𝑅 = (𝑆 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
176, 8, 14, 16syl3anc 1370 . . . . . 6 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝑅 = (𝑆 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
18 ressval3d.e . . . . . . . . . 10 𝐸 = (Base‘ndx)
1918a1i 11 . . . . . . . . 9 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝐸 = (Base‘ndx))
20 df-ss 3904 . . . . . . . . . . . . 13 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2120biimpi 215 . . . . . . . . . . . 12 (𝐴𝐵 → (𝐴𝐵) = 𝐴)
2221eqcomd 2744 . . . . . . . . . . 11 (𝐴𝐵𝐴 = (𝐴𝐵))
2322adantr 481 . . . . . . . . . 10 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) → 𝐴 = (𝐴𝐵))
2423adantr 481 . . . . . . . . 9 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝐴 = (𝐴𝐵))
2519, 24opeq12d 4812 . . . . . . . 8 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → ⟨𝐸, 𝐴⟩ = ⟨(Base‘ndx), (𝐴𝐵)⟩)
2625eqcomd 2744 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → ⟨(Base‘ndx), (𝐴𝐵)⟩ = ⟨𝐸, 𝐴⟩)
2726oveq2d 7291 . . . . . 6 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → (𝑆 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩) = (𝑆 sSet ⟨𝐸, 𝐴⟩))
2817, 27eqtrd 2778 . . . . 5 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
2928ex 413 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
3015a1i 11 . . . . . . 7 ((𝐴 = 𝐵𝜑) → 𝑅 = (𝑆s 𝐴))
31 oveq2 7283 . . . . . . . 8 (𝐴 = 𝐵 → (𝑆s 𝐴) = (𝑆s 𝐵))
3231adantr 481 . . . . . . 7 ((𝐴 = 𝐵𝜑) → (𝑆s 𝐴) = (𝑆s 𝐵))
337adantl 482 . . . . . . . 8 ((𝐴 = 𝐵𝜑) → 𝑆𝑉)
3410ressid 16954 . . . . . . . 8 (𝑆𝑉 → (𝑆s 𝐵) = 𝑆)
3533, 34syl 17 . . . . . . 7 ((𝐴 = 𝐵𝜑) → (𝑆s 𝐵) = 𝑆)
3630, 32, 353eqtrd 2782 . . . . . 6 ((𝐴 = 𝐵𝜑) → 𝑅 = 𝑆)
37 baseid 16915 . . . . . . . 8 Base = Slot (Base‘ndx)
38 ressval3d.f . . . . . . . 8 (𝜑 → Fun 𝑆)
39 ressval3d.d . . . . . . . . 9 (𝜑𝐸 ∈ dom 𝑆)
4018, 39eqeltrrid 2844 . . . . . . . 8 (𝜑 → (Base‘ndx) ∈ dom 𝑆)
4137, 7, 38, 40setsidvald 16900 . . . . . . 7 (𝜑𝑆 = (𝑆 sSet ⟨(Base‘ndx), (Base‘𝑆)⟩))
4241adantl 482 . . . . . 6 ((𝐴 = 𝐵𝜑) → 𝑆 = (𝑆 sSet ⟨(Base‘ndx), (Base‘𝑆)⟩))
4318a1i 11 . . . . . . . . 9 ((𝐴 = 𝐵𝜑) → 𝐸 = (Base‘ndx))
44 simpl 483 . . . . . . . . . 10 ((𝐴 = 𝐵𝜑) → 𝐴 = 𝐵)
4544, 10eqtrdi 2794 . . . . . . . . 9 ((𝐴 = 𝐵𝜑) → 𝐴 = (Base‘𝑆))
4643, 45opeq12d 4812 . . . . . . . 8 ((𝐴 = 𝐵𝜑) → ⟨𝐸, 𝐴⟩ = ⟨(Base‘ndx), (Base‘𝑆)⟩)
4746eqcomd 2744 . . . . . . 7 ((𝐴 = 𝐵𝜑) → ⟨(Base‘ndx), (Base‘𝑆)⟩ = ⟨𝐸, 𝐴⟩)
4847oveq2d 7291 . . . . . 6 ((𝐴 = 𝐵𝜑) → (𝑆 sSet ⟨(Base‘ndx), (Base‘𝑆)⟩) = (𝑆 sSet ⟨𝐸, 𝐴⟩))
4936, 42, 483eqtrd 2782 . . . . 5 ((𝐴 = 𝐵𝜑) → 𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
5049ex 413 . . . 4 (𝐴 = 𝐵 → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
5129, 50jaoi 854 . . 3 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∨ 𝐴 = 𝐵) → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
525, 51sylbi 216 . 2 (𝐴𝐵 → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
531, 52mpcom 38 1 (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887  wpss 3888  cop 4567  dom cdm 5589  Fun wfun 6427  cfv 6433  (class class class)co 7275   sSet csts 16864  ndxcnx 16894  Basecbs 16912  s cress 16941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942
This theorem is referenced by:  estrres  17856
  Copyright terms: Public domain W3C validator