Proof of Theorem ressval3d
Step | Hyp | Ref
| Expression |
1 | | ressval3d.u |
. 2
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
2 | | sspss 4034 |
. . . 4
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) |
3 | | dfpss3 4021 |
. . . . 5
⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
4 | 3 | orbi1i 911 |
. . . 4
⊢ ((𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵) ↔ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) ∨ 𝐴 = 𝐵)) |
5 | 2, 4 | bitri 274 |
. . 3
⊢ (𝐴 ⊆ 𝐵 ↔ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) ∨ 𝐴 = 𝐵)) |
6 | | simplr 766 |
. . . . . . 7
⊢ (((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) ∧ 𝜑) → ¬ 𝐵 ⊆ 𝐴) |
7 | | ressval3d.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
8 | 7 | adantl 482 |
. . . . . . 7
⊢ (((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) ∧ 𝜑) → 𝑆 ∈ 𝑉) |
9 | | simpl 483 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) → 𝐴 ⊆ 𝐵) |
10 | | ressval3d.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑆) |
11 | 10 | fvexi 6788 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
12 | 11 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ V) |
13 | | ssexg 5247 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) |
14 | 9, 12, 13 | syl2an 596 |
. . . . . . 7
⊢ (((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) ∧ 𝜑) → 𝐴 ∈ V) |
15 | | ressval3d.r |
. . . . . . . 8
⊢ 𝑅 = (𝑆 ↾s 𝐴) |
16 | 15, 10 | ressval2 16946 |
. . . . . . 7
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑆 ∈ 𝑉 ∧ 𝐴 ∈ V) → 𝑅 = (𝑆 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
17 | 6, 8, 14, 16 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) ∧ 𝜑) → 𝑅 = (𝑆 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
18 | | ressval3d.e |
. . . . . . . . . 10
⊢ 𝐸 =
(Base‘ndx) |
19 | 18 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) ∧ 𝜑) → 𝐸 = (Base‘ndx)) |
20 | | df-ss 3904 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
21 | 20 | biimpi 215 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
22 | 21 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (𝐴 ∩ 𝐵)) |
23 | 22 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) → 𝐴 = (𝐴 ∩ 𝐵)) |
24 | 23 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) ∧ 𝜑) → 𝐴 = (𝐴 ∩ 𝐵)) |
25 | 19, 24 | opeq12d 4812 |
. . . . . . . 8
⊢ (((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) ∧ 𝜑) → 〈𝐸, 𝐴〉 = 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉) |
26 | 25 | eqcomd 2744 |
. . . . . . 7
⊢ (((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) ∧ 𝜑) → 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉 = 〈𝐸, 𝐴〉) |
27 | 26 | oveq2d 7291 |
. . . . . 6
⊢ (((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) ∧ 𝜑) → (𝑆 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉) = (𝑆 sSet 〈𝐸, 𝐴〉)) |
28 | 17, 27 | eqtrd 2778 |
. . . . 5
⊢ (((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) ∧ 𝜑) → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) |
29 | 28 | ex 413 |
. . . 4
⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) → (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉))) |
30 | 15 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 = 𝐵 ∧ 𝜑) → 𝑅 = (𝑆 ↾s 𝐴)) |
31 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝐴 = 𝐵 → (𝑆 ↾s 𝐴) = (𝑆 ↾s 𝐵)) |
32 | 31 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 = 𝐵 ∧ 𝜑) → (𝑆 ↾s 𝐴) = (𝑆 ↾s 𝐵)) |
33 | 7 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 = 𝐵 ∧ 𝜑) → 𝑆 ∈ 𝑉) |
34 | 10 | ressid 16954 |
. . . . . . . 8
⊢ (𝑆 ∈ 𝑉 → (𝑆 ↾s 𝐵) = 𝑆) |
35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ ((𝐴 = 𝐵 ∧ 𝜑) → (𝑆 ↾s 𝐵) = 𝑆) |
36 | 30, 32, 35 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝐴 = 𝐵 ∧ 𝜑) → 𝑅 = 𝑆) |
37 | | baseid 16915 |
. . . . . . . 8
⊢ Base =
Slot (Base‘ndx) |
38 | | ressval3d.f |
. . . . . . . 8
⊢ (𝜑 → Fun 𝑆) |
39 | | ressval3d.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ dom 𝑆) |
40 | 18, 39 | eqeltrrid 2844 |
. . . . . . . 8
⊢ (𝜑 → (Base‘ndx) ∈
dom 𝑆) |
41 | 37, 7, 38, 40 | setsidvald 16900 |
. . . . . . 7
⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(Base‘ndx),
(Base‘𝑆)〉)) |
42 | 41 | adantl 482 |
. . . . . 6
⊢ ((𝐴 = 𝐵 ∧ 𝜑) → 𝑆 = (𝑆 sSet 〈(Base‘ndx),
(Base‘𝑆)〉)) |
43 | 18 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 = 𝐵 ∧ 𝜑) → 𝐸 = (Base‘ndx)) |
44 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝐴 = 𝐵 ∧ 𝜑) → 𝐴 = 𝐵) |
45 | 44, 10 | eqtrdi 2794 |
. . . . . . . . 9
⊢ ((𝐴 = 𝐵 ∧ 𝜑) → 𝐴 = (Base‘𝑆)) |
46 | 43, 45 | opeq12d 4812 |
. . . . . . . 8
⊢ ((𝐴 = 𝐵 ∧ 𝜑) → 〈𝐸, 𝐴〉 = 〈(Base‘ndx),
(Base‘𝑆)〉) |
47 | 46 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝐴 = 𝐵 ∧ 𝜑) → 〈(Base‘ndx),
(Base‘𝑆)〉 =
〈𝐸, 𝐴〉) |
48 | 47 | oveq2d 7291 |
. . . . . 6
⊢ ((𝐴 = 𝐵 ∧ 𝜑) → (𝑆 sSet 〈(Base‘ndx),
(Base‘𝑆)〉) =
(𝑆 sSet 〈𝐸, 𝐴〉)) |
49 | 36, 42, 48 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝐴 = 𝐵 ∧ 𝜑) → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) |
50 | 49 | ex 413 |
. . . 4
⊢ (𝐴 = 𝐵 → (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉))) |
51 | 29, 50 | jaoi 854 |
. . 3
⊢ (((𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴) ∨ 𝐴 = 𝐵) → (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉))) |
52 | 5, 51 | sylbi 216 |
. 2
⊢ (𝐴 ⊆ 𝐵 → (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉))) |
53 | 1, 52 | mpcom 38 |
1
⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) |