MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressval3d Structured version   Visualization version   GIF version

Theorem ressval3d 16563
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
ressval3d.r 𝑅 = (𝑆s 𝐴)
ressval3d.b 𝐵 = (Base‘𝑆)
ressval3d.e 𝐸 = (Base‘ndx)
ressval3d.s (𝜑𝑆𝑉)
ressval3d.f (𝜑 → Fun 𝑆)
ressval3d.d (𝜑𝐸 ∈ dom 𝑆)
ressval3d.u (𝜑𝐴𝐵)
Assertion
Ref Expression
ressval3d (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))

Proof of Theorem ressval3d
StepHypRef Expression
1 ressval3d.u . 2 (𝜑𝐴𝐵)
2 sspss 4078 . . . 4 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
3 dfpss3 4065 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
43orbi1i 910 . . . 4 ((𝐴𝐵𝐴 = 𝐵) ↔ ((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∨ 𝐴 = 𝐵))
52, 4bitri 277 . . 3 (𝐴𝐵 ↔ ((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∨ 𝐴 = 𝐵))
6 simplr 767 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → ¬ 𝐵𝐴)
7 ressval3d.s . . . . . . . 8 (𝜑𝑆𝑉)
87adantl 484 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝑆𝑉)
9 simpl 485 . . . . . . . 8 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) → 𝐴𝐵)
10 ressval3d.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
1110fvexi 6686 . . . . . . . . 9 𝐵 ∈ V
1211a1i 11 . . . . . . . 8 (𝜑𝐵 ∈ V)
13 ssexg 5229 . . . . . . . 8 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
149, 12, 13syl2an 597 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝐴 ∈ V)
15 ressval3d.r . . . . . . . 8 𝑅 = (𝑆s 𝐴)
1615, 10ressval2 16555 . . . . . . 7 ((¬ 𝐵𝐴𝑆𝑉𝐴 ∈ V) → 𝑅 = (𝑆 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
176, 8, 14, 16syl3anc 1367 . . . . . 6 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝑅 = (𝑆 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
18 ressval3d.e . . . . . . . . . 10 𝐸 = (Base‘ndx)
1918a1i 11 . . . . . . . . 9 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝐸 = (Base‘ndx))
20 df-ss 3954 . . . . . . . . . . . . 13 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2120biimpi 218 . . . . . . . . . . . 12 (𝐴𝐵 → (𝐴𝐵) = 𝐴)
2221eqcomd 2829 . . . . . . . . . . 11 (𝐴𝐵𝐴 = (𝐴𝐵))
2322adantr 483 . . . . . . . . . 10 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) → 𝐴 = (𝐴𝐵))
2423adantr 483 . . . . . . . . 9 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝐴 = (𝐴𝐵))
2519, 24opeq12d 4813 . . . . . . . 8 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → ⟨𝐸, 𝐴⟩ = ⟨(Base‘ndx), (𝐴𝐵)⟩)
2625eqcomd 2829 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → ⟨(Base‘ndx), (𝐴𝐵)⟩ = ⟨𝐸, 𝐴⟩)
2726oveq2d 7174 . . . . . 6 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → (𝑆 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩) = (𝑆 sSet ⟨𝐸, 𝐴⟩))
2817, 27eqtrd 2858 . . . . 5 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
2928ex 415 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
3015a1i 11 . . . . . . 7 ((𝐴 = 𝐵𝜑) → 𝑅 = (𝑆s 𝐴))
31 oveq2 7166 . . . . . . . 8 (𝐴 = 𝐵 → (𝑆s 𝐴) = (𝑆s 𝐵))
3231adantr 483 . . . . . . 7 ((𝐴 = 𝐵𝜑) → (𝑆s 𝐴) = (𝑆s 𝐵))
337adantl 484 . . . . . . . 8 ((𝐴 = 𝐵𝜑) → 𝑆𝑉)
3410ressid 16561 . . . . . . . 8 (𝑆𝑉 → (𝑆s 𝐵) = 𝑆)
3533, 34syl 17 . . . . . . 7 ((𝐴 = 𝐵𝜑) → (𝑆s 𝐵) = 𝑆)
3630, 32, 353eqtrd 2862 . . . . . 6 ((𝐴 = 𝐵𝜑) → 𝑅 = 𝑆)
37 df-base 16491 . . . . . . . 8 Base = Slot 1
38 1nn 11651 . . . . . . . 8 1 ∈ ℕ
39 ressval3d.f . . . . . . . 8 (𝜑 → Fun 𝑆)
40 ressval3d.d . . . . . . . . 9 (𝜑𝐸 ∈ dom 𝑆)
4118, 40eqeltrrid 2920 . . . . . . . 8 (𝜑 → (Base‘ndx) ∈ dom 𝑆)
4237, 38, 7, 39, 41setsidvald 16516 . . . . . . 7 (𝜑𝑆 = (𝑆 sSet ⟨(Base‘ndx), (Base‘𝑆)⟩))
4342adantl 484 . . . . . 6 ((𝐴 = 𝐵𝜑) → 𝑆 = (𝑆 sSet ⟨(Base‘ndx), (Base‘𝑆)⟩))
4418a1i 11 . . . . . . . . 9 ((𝐴 = 𝐵𝜑) → 𝐸 = (Base‘ndx))
45 simpl 485 . . . . . . . . . 10 ((𝐴 = 𝐵𝜑) → 𝐴 = 𝐵)
4645, 10syl6eq 2874 . . . . . . . . 9 ((𝐴 = 𝐵𝜑) → 𝐴 = (Base‘𝑆))
4744, 46opeq12d 4813 . . . . . . . 8 ((𝐴 = 𝐵𝜑) → ⟨𝐸, 𝐴⟩ = ⟨(Base‘ndx), (Base‘𝑆)⟩)
4847eqcomd 2829 . . . . . . 7 ((𝐴 = 𝐵𝜑) → ⟨(Base‘ndx), (Base‘𝑆)⟩ = ⟨𝐸, 𝐴⟩)
4948oveq2d 7174 . . . . . 6 ((𝐴 = 𝐵𝜑) → (𝑆 sSet ⟨(Base‘ndx), (Base‘𝑆)⟩) = (𝑆 sSet ⟨𝐸, 𝐴⟩))
5036, 43, 493eqtrd 2862 . . . . 5 ((𝐴 = 𝐵𝜑) → 𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
5150ex 415 . . . 4 (𝐴 = 𝐵 → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
5229, 51jaoi 853 . . 3 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∨ 𝐴 = 𝐵) → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
535, 52sylbi 219 . 2 (𝐴𝐵 → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
541, 53mpcom 38 1 (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  Vcvv 3496  cin 3937  wss 3938  wpss 3939  cop 4575  dom cdm 5557  Fun wfun 6351  cfv 6357  (class class class)co 7158  1c1 10540  ndxcnx 16482   sSet csts 16483  Basecbs 16485  s cress 16486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-1cn 10597  ax-addcl 10599
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-nn 11641  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493
This theorem is referenced by:  estrres  17391
  Copyright terms: Public domain W3C validator