MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressval3d Structured version   Visualization version   GIF version

Theorem ressval3d 17192
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 3-Jul-2022.) (Proof shortened by AV, 17-Oct-2024.)
Hypotheses
Ref Expression
ressval3d.r 𝑅 = (𝑆s 𝐴)
ressval3d.b 𝐵 = (Base‘𝑆)
ressval3d.e 𝐸 = (Base‘ndx)
ressval3d.s (𝜑𝑆𝑉)
ressval3d.f (𝜑 → Fun 𝑆)
ressval3d.d (𝜑𝐸 ∈ dom 𝑆)
ressval3d.u (𝜑𝐴𝐵)
Assertion
Ref Expression
ressval3d (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))

Proof of Theorem ressval3d
StepHypRef Expression
1 ressval3d.u . 2 (𝜑𝐴𝐵)
2 sspss 4061 . . . 4 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
3 dfpss3 4048 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
43orbi1i 913 . . . 4 ((𝐴𝐵𝐴 = 𝐵) ↔ ((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∨ 𝐴 = 𝐵))
52, 4bitri 275 . . 3 (𝐴𝐵 ↔ ((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∨ 𝐴 = 𝐵))
6 simplr 768 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → ¬ 𝐵𝐴)
7 ressval3d.s . . . . . . . 8 (𝜑𝑆𝑉)
87adantl 481 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝑆𝑉)
9 simpl 482 . . . . . . . 8 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) → 𝐴𝐵)
10 ressval3d.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
1110fvexi 6854 . . . . . . . . 9 𝐵 ∈ V
1211a1i 11 . . . . . . . 8 (𝜑𝐵 ∈ V)
13 ssexg 5273 . . . . . . . 8 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
149, 12, 13syl2an 596 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝐴 ∈ V)
15 ressval3d.r . . . . . . . 8 𝑅 = (𝑆s 𝐴)
1615, 10ressval2 17181 . . . . . . 7 ((¬ 𝐵𝐴𝑆𝑉𝐴 ∈ V) → 𝑅 = (𝑆 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
176, 8, 14, 16syl3anc 1373 . . . . . 6 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝑅 = (𝑆 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
18 ressval3d.e . . . . . . . . . 10 𝐸 = (Base‘ndx)
1918a1i 11 . . . . . . . . 9 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝐸 = (Base‘ndx))
20 dfss2 3929 . . . . . . . . . . . . 13 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2120biimpi 216 . . . . . . . . . . . 12 (𝐴𝐵 → (𝐴𝐵) = 𝐴)
2221eqcomd 2735 . . . . . . . . . . 11 (𝐴𝐵𝐴 = (𝐴𝐵))
2322adantr 480 . . . . . . . . . 10 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) → 𝐴 = (𝐴𝐵))
2423adantr 480 . . . . . . . . 9 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝐴 = (𝐴𝐵))
2519, 24opeq12d 4841 . . . . . . . 8 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → ⟨𝐸, 𝐴⟩ = ⟨(Base‘ndx), (𝐴𝐵)⟩)
2625eqcomd 2735 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → ⟨(Base‘ndx), (𝐴𝐵)⟩ = ⟨𝐸, 𝐴⟩)
2726oveq2d 7385 . . . . . 6 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → (𝑆 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩) = (𝑆 sSet ⟨𝐸, 𝐴⟩))
2817, 27eqtrd 2764 . . . . 5 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
2928ex 412 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
3015a1i 11 . . . . . . 7 ((𝐴 = 𝐵𝜑) → 𝑅 = (𝑆s 𝐴))
31 oveq2 7377 . . . . . . . 8 (𝐴 = 𝐵 → (𝑆s 𝐴) = (𝑆s 𝐵))
3231adantr 480 . . . . . . 7 ((𝐴 = 𝐵𝜑) → (𝑆s 𝐴) = (𝑆s 𝐵))
337adantl 481 . . . . . . . 8 ((𝐴 = 𝐵𝜑) → 𝑆𝑉)
3410ressid 17190 . . . . . . . 8 (𝑆𝑉 → (𝑆s 𝐵) = 𝑆)
3533, 34syl 17 . . . . . . 7 ((𝐴 = 𝐵𝜑) → (𝑆s 𝐵) = 𝑆)
3630, 32, 353eqtrd 2768 . . . . . 6 ((𝐴 = 𝐵𝜑) → 𝑅 = 𝑆)
37 baseid 17158 . . . . . . . 8 Base = Slot (Base‘ndx)
38 ressval3d.f . . . . . . . 8 (𝜑 → Fun 𝑆)
39 ressval3d.d . . . . . . . . 9 (𝜑𝐸 ∈ dom 𝑆)
4018, 39eqeltrrid 2833 . . . . . . . 8 (𝜑 → (Base‘ndx) ∈ dom 𝑆)
4137, 7, 38, 40setsidvald 17145 . . . . . . 7 (𝜑𝑆 = (𝑆 sSet ⟨(Base‘ndx), (Base‘𝑆)⟩))
4241adantl 481 . . . . . 6 ((𝐴 = 𝐵𝜑) → 𝑆 = (𝑆 sSet ⟨(Base‘ndx), (Base‘𝑆)⟩))
4318a1i 11 . . . . . . . . 9 ((𝐴 = 𝐵𝜑) → 𝐸 = (Base‘ndx))
44 simpl 482 . . . . . . . . . 10 ((𝐴 = 𝐵𝜑) → 𝐴 = 𝐵)
4544, 10eqtrdi 2780 . . . . . . . . 9 ((𝐴 = 𝐵𝜑) → 𝐴 = (Base‘𝑆))
4643, 45opeq12d 4841 . . . . . . . 8 ((𝐴 = 𝐵𝜑) → ⟨𝐸, 𝐴⟩ = ⟨(Base‘ndx), (Base‘𝑆)⟩)
4746eqcomd 2735 . . . . . . 7 ((𝐴 = 𝐵𝜑) → ⟨(Base‘ndx), (Base‘𝑆)⟩ = ⟨𝐸, 𝐴⟩)
4847oveq2d 7385 . . . . . 6 ((𝐴 = 𝐵𝜑) → (𝑆 sSet ⟨(Base‘ndx), (Base‘𝑆)⟩) = (𝑆 sSet ⟨𝐸, 𝐴⟩))
4936, 42, 483eqtrd 2768 . . . . 5 ((𝐴 = 𝐵𝜑) → 𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
5049ex 412 . . . 4 (𝐴 = 𝐵 → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
5129, 50jaoi 857 . . 3 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∨ 𝐴 = 𝐵) → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
525, 51sylbi 217 . 2 (𝐴𝐵 → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
531, 52mpcom 38 1 (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3444  cin 3910  wss 3911  wpss 3912  cop 4591  dom cdm 5631  Fun wfun 6493  cfv 6499  (class class class)co 7369   sSet csts 17109  ndxcnx 17139  Basecbs 17155  s cress 17176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-1cn 11102  ax-addcl 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-nn 12163  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177
This theorem is referenced by:  estrres  18076
  Copyright terms: Public domain W3C validator