MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressval3d Structured version   Visualization version   GIF version

Theorem ressval3d 17292
Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 3-Jul-2022.) (Proof shortened by AV, 17-Oct-2024.)
Hypotheses
Ref Expression
ressval3d.r 𝑅 = (𝑆s 𝐴)
ressval3d.b 𝐵 = (Base‘𝑆)
ressval3d.e 𝐸 = (Base‘ndx)
ressval3d.s (𝜑𝑆𝑉)
ressval3d.f (𝜑 → Fun 𝑆)
ressval3d.d (𝜑𝐸 ∈ dom 𝑆)
ressval3d.u (𝜑𝐴𝐵)
Assertion
Ref Expression
ressval3d (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))

Proof of Theorem ressval3d
StepHypRef Expression
1 ressval3d.u . 2 (𝜑𝐴𝐵)
2 sspss 4102 . . . 4 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
3 dfpss3 4089 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
43orbi1i 914 . . . 4 ((𝐴𝐵𝐴 = 𝐵) ↔ ((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∨ 𝐴 = 𝐵))
52, 4bitri 275 . . 3 (𝐴𝐵 ↔ ((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∨ 𝐴 = 𝐵))
6 simplr 769 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → ¬ 𝐵𝐴)
7 ressval3d.s . . . . . . . 8 (𝜑𝑆𝑉)
87adantl 481 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝑆𝑉)
9 simpl 482 . . . . . . . 8 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) → 𝐴𝐵)
10 ressval3d.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
1110fvexi 6920 . . . . . . . . 9 𝐵 ∈ V
1211a1i 11 . . . . . . . 8 (𝜑𝐵 ∈ V)
13 ssexg 5323 . . . . . . . 8 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
149, 12, 13syl2an 596 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝐴 ∈ V)
15 ressval3d.r . . . . . . . 8 𝑅 = (𝑆s 𝐴)
1615, 10ressval2 17279 . . . . . . 7 ((¬ 𝐵𝐴𝑆𝑉𝐴 ∈ V) → 𝑅 = (𝑆 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
176, 8, 14, 16syl3anc 1373 . . . . . 6 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝑅 = (𝑆 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
18 ressval3d.e . . . . . . . . . 10 𝐸 = (Base‘ndx)
1918a1i 11 . . . . . . . . 9 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝐸 = (Base‘ndx))
20 dfss2 3969 . . . . . . . . . . . . 13 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2120biimpi 216 . . . . . . . . . . . 12 (𝐴𝐵 → (𝐴𝐵) = 𝐴)
2221eqcomd 2743 . . . . . . . . . . 11 (𝐴𝐵𝐴 = (𝐴𝐵))
2322adantr 480 . . . . . . . . . 10 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) → 𝐴 = (𝐴𝐵))
2423adantr 480 . . . . . . . . 9 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝐴 = (𝐴𝐵))
2519, 24opeq12d 4881 . . . . . . . 8 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → ⟨𝐸, 𝐴⟩ = ⟨(Base‘ndx), (𝐴𝐵)⟩)
2625eqcomd 2743 . . . . . . 7 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → ⟨(Base‘ndx), (𝐴𝐵)⟩ = ⟨𝐸, 𝐴⟩)
2726oveq2d 7447 . . . . . 6 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → (𝑆 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩) = (𝑆 sSet ⟨𝐸, 𝐴⟩))
2817, 27eqtrd 2777 . . . . 5 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∧ 𝜑) → 𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
2928ex 412 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
3015a1i 11 . . . . . . 7 ((𝐴 = 𝐵𝜑) → 𝑅 = (𝑆s 𝐴))
31 oveq2 7439 . . . . . . . 8 (𝐴 = 𝐵 → (𝑆s 𝐴) = (𝑆s 𝐵))
3231adantr 480 . . . . . . 7 ((𝐴 = 𝐵𝜑) → (𝑆s 𝐴) = (𝑆s 𝐵))
337adantl 481 . . . . . . . 8 ((𝐴 = 𝐵𝜑) → 𝑆𝑉)
3410ressid 17290 . . . . . . . 8 (𝑆𝑉 → (𝑆s 𝐵) = 𝑆)
3533, 34syl 17 . . . . . . 7 ((𝐴 = 𝐵𝜑) → (𝑆s 𝐵) = 𝑆)
3630, 32, 353eqtrd 2781 . . . . . 6 ((𝐴 = 𝐵𝜑) → 𝑅 = 𝑆)
37 baseid 17250 . . . . . . . 8 Base = Slot (Base‘ndx)
38 ressval3d.f . . . . . . . 8 (𝜑 → Fun 𝑆)
39 ressval3d.d . . . . . . . . 9 (𝜑𝐸 ∈ dom 𝑆)
4018, 39eqeltrrid 2846 . . . . . . . 8 (𝜑 → (Base‘ndx) ∈ dom 𝑆)
4137, 7, 38, 40setsidvald 17236 . . . . . . 7 (𝜑𝑆 = (𝑆 sSet ⟨(Base‘ndx), (Base‘𝑆)⟩))
4241adantl 481 . . . . . 6 ((𝐴 = 𝐵𝜑) → 𝑆 = (𝑆 sSet ⟨(Base‘ndx), (Base‘𝑆)⟩))
4318a1i 11 . . . . . . . . 9 ((𝐴 = 𝐵𝜑) → 𝐸 = (Base‘ndx))
44 simpl 482 . . . . . . . . . 10 ((𝐴 = 𝐵𝜑) → 𝐴 = 𝐵)
4544, 10eqtrdi 2793 . . . . . . . . 9 ((𝐴 = 𝐵𝜑) → 𝐴 = (Base‘𝑆))
4643, 45opeq12d 4881 . . . . . . . 8 ((𝐴 = 𝐵𝜑) → ⟨𝐸, 𝐴⟩ = ⟨(Base‘ndx), (Base‘𝑆)⟩)
4746eqcomd 2743 . . . . . . 7 ((𝐴 = 𝐵𝜑) → ⟨(Base‘ndx), (Base‘𝑆)⟩ = ⟨𝐸, 𝐴⟩)
4847oveq2d 7447 . . . . . 6 ((𝐴 = 𝐵𝜑) → (𝑆 sSet ⟨(Base‘ndx), (Base‘𝑆)⟩) = (𝑆 sSet ⟨𝐸, 𝐴⟩))
4936, 42, 483eqtrd 2781 . . . . 5 ((𝐴 = 𝐵𝜑) → 𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
5049ex 412 . . . 4 (𝐴 = 𝐵 → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
5129, 50jaoi 858 . . 3 (((𝐴𝐵 ∧ ¬ 𝐵𝐴) ∨ 𝐴 = 𝐵) → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
525, 51sylbi 217 . 2 (𝐴𝐵 → (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩)))
531, 52mpcom 38 1 (𝜑𝑅 = (𝑆 sSet ⟨𝐸, 𝐴⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  Vcvv 3480  cin 3950  wss 3951  wpss 3952  cop 4632  dom cdm 5685  Fun wfun 6555  cfv 6561  (class class class)co 7431   sSet csts 17200  ndxcnx 17230  Basecbs 17247  s cress 17274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-1cn 11213  ax-addcl 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-nn 12267  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275
This theorem is referenced by:  estrres  18184
  Copyright terms: Public domain W3C validator