Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem95 Structured version   Visualization version   GIF version

Theorem fourierdlem95 46206
Description: Algebraic manipulation of integrals, used by other lemmas. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem95.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem95.xre (𝜑𝑋 ∈ ℝ)
fourierdlem95.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem95.m (𝜑𝑀 ∈ ℕ)
fourierdlem95.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem95.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem95.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem95.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem95.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem95.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem95.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem95.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem95.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem95.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem95.i 𝐼 = (ℝ D 𝐹)
fourierdlem95.ifn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
fourierdlem95.b (𝜑𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem95.c (𝜑𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem95.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem95.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem95.admvol (𝜑𝐴 ∈ dom vol)
fourierdlem95.ass (𝜑𝐴 ⊆ ((-π[,]π) ∖ {0}))
fourierlemenplusacver2eqitgdirker.e 𝐸 = (𝑛 ∈ ℕ ↦ (∫𝐴(𝐺𝑠) d𝑠 / π))
fourierdlem95.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem95.o (𝜑𝑂 ∈ ℝ)
fourierdlem95.ifeqo ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑂)
fourierdlem95.itgdirker ((𝜑𝑛 ∈ ℕ) → ∫𝐴((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
Assertion
Ref Expression
fourierdlem95 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑂 / 2)) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝐷,𝑠   𝐹,𝑠   𝑖,𝐺,𝑠   𝐻,𝑠   𝐾,𝑠   𝐿,𝑠   𝑖,𝑀,𝑝,𝑚   𝑀,𝑠   𝑂,𝑠   𝑅,𝑠   𝑆,𝑠   𝑖,𝑉,𝑝   𝑉,𝑠   𝑊,𝑠   𝑖,𝑋,𝑝,𝑚   𝑋,𝑠   𝑌,𝑠   𝑖,𝑛,𝑠   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑝)   𝐴(𝑖,𝑚,𝑛,𝑝)   𝐵(𝑖,𝑚,𝑛,𝑝)   𝐶(𝑖,𝑚,𝑛,𝑝)   𝐷(𝑖,𝑚,𝑛,𝑝)   𝑃(𝑖,𝑚,𝑛,𝑠,𝑝)   𝑅(𝑖,𝑚,𝑛,𝑝)   𝑆(𝑖,𝑚,𝑛,𝑝)   𝑈(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐸(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐹(𝑖,𝑚,𝑛,𝑝)   𝐺(𝑚,𝑛,𝑝)   𝐻(𝑖,𝑚,𝑛,𝑝)   𝐼(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐾(𝑖,𝑚,𝑛,𝑝)   𝐿(𝑖,𝑚,𝑛,𝑝)   𝑀(𝑛)   𝑂(𝑖,𝑚,𝑛,𝑝)   𝑉(𝑚,𝑛)   𝑊(𝑖,𝑚,𝑛,𝑝)   𝑋(𝑛)   𝑌(𝑖,𝑚,𝑛,𝑝)

Proof of Theorem fourierdlem95
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2 fourierdlem95.ass . . . . . . . . . 10 (𝜑𝐴 ⊆ ((-π[,]π) ∖ {0}))
32difss2d 4105 . . . . . . . . 9 (𝜑𝐴 ⊆ (-π[,]π))
43adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ (-π[,]π))
54sselda 3949 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ (-π[,]π))
6 fourierdlem95.f . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
76adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
8 fourierdlem95.xre . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
98adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
10 ioossre 13375 . . . . . . . . . . . . 13 (𝑋(,)+∞) ⊆ ℝ
1110a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
126, 11fssresd 6730 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
13 ioosscn 13376 . . . . . . . . . . . 12 (𝑋(,)+∞) ⊆ ℂ
1413a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
15 eqid 2730 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
16 pnfxr 11235 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
1716a1i 11 . . . . . . . . . . . 12 (𝜑 → +∞ ∈ ℝ*)
188ltpnfd 13088 . . . . . . . . . . . 12 (𝜑𝑋 < +∞)
1915, 17, 8, 18lptioo1cn 45651 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
20 fourierdlem95.y . . . . . . . . . . 11 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
2112, 14, 19, 20limcrecl 45634 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
2221adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
23 ioossre 13375 . . . . . . . . . . . . 13 (-∞(,)𝑋) ⊆ ℝ
2423a1i 11 . . . . . . . . . . . 12 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
256, 24fssresd 6730 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
26 ioosscn 13376 . . . . . . . . . . . 12 (-∞(,)𝑋) ⊆ ℂ
2726a1i 11 . . . . . . . . . . 11 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
28 mnfxr 11238 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
2928a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
308mnfltd 13091 . . . . . . . . . . . 12 (𝜑 → -∞ < 𝑋)
3115, 29, 8, 30lptioo2cn 45650 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
32 fourierdlem95.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
3325, 27, 31, 32limcrecl 45634 . . . . . . . . . 10 (𝜑𝑊 ∈ ℝ)
3433adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
35 fourierdlem95.h . . . . . . . . 9 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
36 fourierdlem95.k . . . . . . . . 9 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
37 fourierdlem95.u . . . . . . . . 9 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
381nnred 12208 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
39 fourierdlem95.s . . . . . . . . 9 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
40 fourierdlem95.g . . . . . . . . 9 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
417, 9, 22, 34, 35, 36, 37, 38, 39, 40fourierdlem67 46178 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺:(-π[,]π)⟶ℝ)
4241ffvelcdmda 7059 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
435, 42syldan 591 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) ∈ ℝ)
44 fourierdlem95.admvol . . . . . . . 8 (𝜑𝐴 ∈ dom vol)
4544adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
4641feqmptd 6932 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
47 fourierdlem95.p . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
48 fourierdlem95.x . . . . . . . . . 10 (𝜑𝑋 ∈ ran 𝑉)
4948adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ran 𝑉)
5020adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
5132adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
52 fourierdlem95.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
5352adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
54 fourierdlem95.v . . . . . . . . . 10 (𝜑𝑉 ∈ (𝑃𝑀))
5554adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ (𝑃𝑀))
56 fourierdlem95.fcn . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
5756adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
58 fourierdlem95.r . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
5958adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
60 fourierdlem95.l . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
6160adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
62 fveq2 6861 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
6362oveq1d 7405 . . . . . . . . . 10 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
6463cbvmptv 5214 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
65 eqid 2730 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
66 fourierdlem95.i . . . . . . . . 9 𝐼 = (ℝ D 𝐹)
67 fourierdlem95.ifn . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
6867adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
69 fourierdlem95.b . . . . . . . . . 10 (𝜑𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
7069adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
71 fourierdlem95.c . . . . . . . . . 10 (𝜑𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
7271adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
7347, 7, 49, 50, 51, 35, 36, 37, 38, 39, 40, 53, 55, 57, 59, 61, 64, 65, 66, 68, 70, 72fourierdlem88 46199 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
7446, 73eqeltrrd 2830 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
754, 45, 42, 74iblss 25713 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (𝐺𝑠)) ∈ 𝐿1)
7643, 75itgrecl 25706 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(𝐺𝑠) d𝑠 ∈ ℝ)
77 pire 26373 . . . . . 6 π ∈ ℝ
7877a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
79 pipos 26375 . . . . . . 7 0 < π
8077, 79gt0ne0ii 11721 . . . . . 6 π ≠ 0
8180a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
8276, 78, 81redivcld 12017 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(𝐺𝑠) d𝑠 / π) ∈ ℝ)
83 fourierlemenplusacver2eqitgdirker.e . . . . 5 𝐸 = (𝑛 ∈ ℕ ↦ (∫𝐴(𝐺𝑠) d𝑠 / π))
8483fvmpt2 6982 . . . 4 ((𝑛 ∈ ℕ ∧ (∫𝐴(𝐺𝑠) d𝑠 / π) ∈ ℝ) → (𝐸𝑛) = (∫𝐴(𝐺𝑠) d𝑠 / π))
851, 82, 84syl2anc 584 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (∫𝐴(𝐺𝑠) d𝑠 / π))
86 fourierdlem95.o . . . . . . 7 (𝜑𝑂 ∈ ℝ)
8786recnd 11209 . . . . . 6 (𝜑𝑂 ∈ ℂ)
88 2cnd 12271 . . . . . 6 (𝜑 → 2 ∈ ℂ)
89 2ne0 12297 . . . . . . 7 2 ≠ 0
9089a1i 11 . . . . . 6 (𝜑 → 2 ≠ 0)
9187, 88, 90divrecd 11968 . . . . 5 (𝜑 → (𝑂 / 2) = (𝑂 · (1 / 2)))
9291adantr 480 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑂 / 2) = (𝑂 · (1 / 2)))
93 fourierdlem95.itgdirker . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫𝐴((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
9493eqcomd 2736 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (1 / 2) = ∫𝐴((𝐷𝑛)‘𝑠) d𝑠)
9594oveq2d 7406 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑂 · (1 / 2)) = (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠))
9692, 95eqtrd 2765 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑂 / 2) = (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠))
9785, 96oveq12d 7408 . 2 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑂 / 2)) = ((∫𝐴(𝐺𝑠) d𝑠 / π) + (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠)))
982sselda 3949 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
9998adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
100 fourierdlem95.d . . . . . . . 8 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
101 eqid 2730 . . . . . . . 8 ((-π[,]π) ∖ {0}) = ((-π[,]π) ∖ {0})
1026, 8, 21, 33, 100, 35, 36, 37, 39, 40, 101fourierdlem66 46177 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π[,]π) ∖ {0})) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
10399, 102syldan 591 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
104103itgeq2dv 25690 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(𝐺𝑠) d𝑠 = ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠)
105104oveq1d 7405 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(𝐺𝑠) d𝑠 / π) = (∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠 / π))
10678recnd 11209 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
1076adantr 480 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 𝐹:ℝ⟶ℝ)
1088adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
109 difss 4102 . . . . . . . . . . . . . 14 ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)
11077renegcli 11490 . . . . . . . . . . . . . . 15 -π ∈ ℝ
111 iccssre 13397 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
112110, 77, 111mp2an 692 . . . . . . . . . . . . . 14 (-π[,]π) ⊆ ℝ
113109, 112sstri 3959 . . . . . . . . . . . . 13 ((-π[,]π) ∖ {0}) ⊆ ℝ
114113, 98sselid 3947 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
115108, 114readdcld 11210 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
116107, 115ffvelcdmd 7060 . . . . . . . . . 10 ((𝜑𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
11721, 33ifcld 4538 . . . . . . . . . . 11 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
118117adantr 480 . . . . . . . . . 10 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
119116, 118resubcld 11613 . . . . . . . . 9 ((𝜑𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
120119adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
1211adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑛 ∈ ℕ)
122114adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ ℝ)
123100dirkerre 46100 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
124121, 122, 123syl2anc 584 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
125120, 124remulcld 11211 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
126103eqcomd 2736 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (𝐺𝑠))
127126oveq1d 7405 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) / π) = ((𝐺𝑠) / π))
128 picn 26374 . . . . . . . . . . . . 13 π ∈ ℂ
129128a1i 11 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → π ∈ ℂ)
130125recnd 11209 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) ∈ ℂ)
13180a1i 11 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → π ≠ 0)
132129, 130, 129, 131div23d 12002 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) / π) = ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
13343recnd 11209 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) ∈ ℂ)
134133, 129, 131divrec2d 11969 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐺𝑠) / π) = ((1 / π) · (𝐺𝑠)))
135127, 132, 1343eqtr3rd 2774 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((1 / π) · (𝐺𝑠)) = ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
136128, 80dividi 11922 . . . . . . . . . . . 12 (π / π) = 1
137136a1i 11 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (π / π) = 1)
138137oveq1d 7405 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (1 · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
139130mullidd 11199 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (1 · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)))
140135, 138, 1393eqtrrd 2770 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) = ((1 / π) · (𝐺𝑠)))
141140mpteq2dva 5203 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (𝑠𝐴 ↦ ((1 / π) · (𝐺𝑠))))
142106, 81reccld 11958 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / π) ∈ ℂ)
143142, 43, 75iblmulc2 25739 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ ((1 / π) · (𝐺𝑠))) ∈ 𝐿1)
144141, 143eqeltrd 2829 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
145106, 125, 144itgmulc2 25742 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠) = ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠)
146145eqcomd 2736 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠 = (π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠))
147146oveq1d 7405 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠 / π) = ((π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠) / π))
148125, 144itgcl 25692 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℂ)
149148, 106, 81divcan3d 11970 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠) / π) = ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠)
150105, 147, 1493eqtrd 2769 . . 3 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(𝐺𝑠) d𝑠 / π) = ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠)
15187adantr 480 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝑂 ∈ ℂ)
152112sseli 3945 . . . . . . 7 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
153152, 123sylan2 593 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
154153adantll 714 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
155110a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
156 ax-resscn 11132 . . . . . . . . . 10 ℝ ⊆ ℂ
157156a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → ℝ ⊆ ℂ)
158 ssid 3972 . . . . . . . . 9 ℂ ⊆ ℂ
159 cncfss 24799 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
160157, 158, 159sylancl 586 . . . . . . . 8 (𝑛 ∈ ℕ → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
161 eqid 2730 . . . . . . . . 9 (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠)) = (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠))
162100dirkerf 46102 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛):ℝ⟶ℝ)
163162feqmptd 6932 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐷𝑛) = (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠)))
164100dirkercncf 46112 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
165163, 164eqeltrrd 2830 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠)) ∈ (ℝ–cn→ℝ))
166112a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → (-π[,]π) ⊆ ℝ)
167 ssid 3972 . . . . . . . . . 10 ℝ ⊆ ℝ
168167a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → ℝ ⊆ ℝ)
169161, 165, 166, 168, 153cncfmptssg 45876 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℝ))
170160, 169sseldd 3950 . . . . . . 7 (𝑛 ∈ ℕ → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ))
171170adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ))
172 cniccibl 25749 . . . . . 6 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ)) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ 𝐿1)
173155, 78, 171, 172syl3anc 1373 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ 𝐿1)
1744, 45, 154, 173iblss 25713 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ ((𝐷𝑛)‘𝑠)) ∈ 𝐿1)
175151, 124, 174itgmulc2 25742 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠) = ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠)
176150, 175oveq12d 7408 . 2 ((𝜑𝑛 ∈ ℕ) → ((∫𝐴(𝐺𝑠) d𝑠 / π) + (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠)) = (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠))
17786ad2antrr 726 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑂 ∈ ℝ)
178177, 124remulcld 11211 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑂 · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
179151, 124, 174iblmulc2 25739 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (𝑂 · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
180125, 144, 178, 179itgadd 25733 . . 3 ((𝜑𝑛 ∈ ℕ) → ∫𝐴((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) d𝑠 = (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠))
181 fourierdlem95.ifeqo . . . . . . . . 9 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑂)
182181eqcomd 2736 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝑂 = if(0 < 𝑠, 𝑌, 𝑊))
183182adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑂 = if(0 < 𝑠, 𝑌, 𝑊))
184183oveq1d 7405 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑂 · ((𝐷𝑛)‘𝑠)) = (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠)))
185184oveq2d 7406 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))))
186116recnd 11209 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
187186adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
188118recnd 11209 . . . . . . . 8 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
189188adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
190124recnd 11209 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℂ)
191187, 189, 190subdird 11642 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) = (((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))))
192191oveq1d 7405 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) = ((((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))))
193187, 190mulcld 11201 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℂ)
194189, 190mulcld 11201 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠)) ∈ ℂ)
195193, 194npcand 11544 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
196185, 192, 1953eqtrd 2769 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
197196itgeq2dv 25690 . . 3 ((𝜑𝑛 ∈ ℕ) → ∫𝐴((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) d𝑠 = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
198180, 197eqtr3d 2767 . 2 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
19997, 176, 1983eqtrd 2769 1 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑂 / 2)) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  cdif 3914  wss 3917  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  (,)cioo 13313  [,]cicc 13316  ...cfz 13475  ..^cfzo 13622   mod cmo 13838  sincsin 16036  πcpi 16039  TopOpenctopn 17391  fldccnfld 21271  cnccncf 24776  volcvol 25371  𝐿1cibl 25525  citg 25526   lim climc 25770   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-t1 23208  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578  df-limc 25774  df-dv 25775
This theorem is referenced by:  fourierdlem103  46214  fourierdlem104  46215
  Copyright terms: Public domain W3C validator