Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem95 Structured version   Visualization version   GIF version

Theorem fourierdlem95 43742
Description: Algebraic manipulation of integrals, used by other lemmas. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem95.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem95.xre (𝜑𝑋 ∈ ℝ)
fourierdlem95.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem95.m (𝜑𝑀 ∈ ℕ)
fourierdlem95.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem95.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem95.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem95.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem95.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem95.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem95.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem95.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem95.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem95.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem95.i 𝐼 = (ℝ D 𝐹)
fourierdlem95.ifn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
fourierdlem95.b (𝜑𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem95.c (𝜑𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem95.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem95.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem95.admvol (𝜑𝐴 ∈ dom vol)
fourierdlem95.ass (𝜑𝐴 ⊆ ((-π[,]π) ∖ {0}))
fourierlemenplusacver2eqitgdirker.e 𝐸 = (𝑛 ∈ ℕ ↦ (∫𝐴(𝐺𝑠) d𝑠 / π))
fourierdlem95.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem95.o (𝜑𝑂 ∈ ℝ)
fourierdlem95.ifeqo ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑂)
fourierdlem95.itgdirker ((𝜑𝑛 ∈ ℕ) → ∫𝐴((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
Assertion
Ref Expression
fourierdlem95 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑂 / 2)) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝐷,𝑠   𝐹,𝑠   𝑖,𝐺,𝑠   𝐻,𝑠   𝐾,𝑠   𝐿,𝑠   𝑖,𝑀,𝑝,𝑚   𝑀,𝑠   𝑂,𝑠   𝑅,𝑠   𝑆,𝑠   𝑖,𝑉,𝑝   𝑉,𝑠   𝑊,𝑠   𝑖,𝑋,𝑝,𝑚   𝑋,𝑠   𝑌,𝑠   𝑖,𝑛,𝑠   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑝)   𝐴(𝑖,𝑚,𝑛,𝑝)   𝐵(𝑖,𝑚,𝑛,𝑝)   𝐶(𝑖,𝑚,𝑛,𝑝)   𝐷(𝑖,𝑚,𝑛,𝑝)   𝑃(𝑖,𝑚,𝑛,𝑠,𝑝)   𝑅(𝑖,𝑚,𝑛,𝑝)   𝑆(𝑖,𝑚,𝑛,𝑝)   𝑈(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐸(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐹(𝑖,𝑚,𝑛,𝑝)   𝐺(𝑚,𝑛,𝑝)   𝐻(𝑖,𝑚,𝑛,𝑝)   𝐼(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐾(𝑖,𝑚,𝑛,𝑝)   𝐿(𝑖,𝑚,𝑛,𝑝)   𝑀(𝑛)   𝑂(𝑖,𝑚,𝑛,𝑝)   𝑉(𝑚,𝑛)   𝑊(𝑖,𝑚,𝑛,𝑝)   𝑋(𝑛)   𝑌(𝑖,𝑚,𝑛,𝑝)

Proof of Theorem fourierdlem95
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2 fourierdlem95.ass . . . . . . . . . 10 (𝜑𝐴 ⊆ ((-π[,]π) ∖ {0}))
32difss2d 4069 . . . . . . . . 9 (𝜑𝐴 ⊆ (-π[,]π))
43adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ (-π[,]π))
54sselda 3921 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ (-π[,]π))
6 fourierdlem95.f . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
76adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
8 fourierdlem95.xre . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
98adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
10 ioossre 13140 . . . . . . . . . . . . 13 (𝑋(,)+∞) ⊆ ℝ
1110a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
126, 11fssresd 6641 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
13 ioosscn 13141 . . . . . . . . . . . 12 (𝑋(,)+∞) ⊆ ℂ
1413a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
15 eqid 2738 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
16 pnfxr 11029 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
1716a1i 11 . . . . . . . . . . . 12 (𝜑 → +∞ ∈ ℝ*)
188ltpnfd 12857 . . . . . . . . . . . 12 (𝜑𝑋 < +∞)
1915, 17, 8, 18lptioo1cn 43187 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
20 fourierdlem95.y . . . . . . . . . . 11 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
2112, 14, 19, 20limcrecl 43170 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
2221adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
23 ioossre 13140 . . . . . . . . . . . . 13 (-∞(,)𝑋) ⊆ ℝ
2423a1i 11 . . . . . . . . . . . 12 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
256, 24fssresd 6641 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
26 ioosscn 13141 . . . . . . . . . . . 12 (-∞(,)𝑋) ⊆ ℂ
2726a1i 11 . . . . . . . . . . 11 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
28 mnfxr 11032 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
2928a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
308mnfltd 12860 . . . . . . . . . . . 12 (𝜑 → -∞ < 𝑋)
3115, 29, 8, 30lptioo2cn 43186 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
32 fourierdlem95.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
3325, 27, 31, 32limcrecl 43170 . . . . . . . . . 10 (𝜑𝑊 ∈ ℝ)
3433adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
35 fourierdlem95.h . . . . . . . . 9 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
36 fourierdlem95.k . . . . . . . . 9 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
37 fourierdlem95.u . . . . . . . . 9 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
381nnred 11988 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
39 fourierdlem95.s . . . . . . . . 9 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
40 fourierdlem95.g . . . . . . . . 9 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
417, 9, 22, 34, 35, 36, 37, 38, 39, 40fourierdlem67 43714 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺:(-π[,]π)⟶ℝ)
4241ffvelrnda 6961 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
435, 42syldan 591 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) ∈ ℝ)
44 fourierdlem95.admvol . . . . . . . 8 (𝜑𝐴 ∈ dom vol)
4544adantr 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
4641feqmptd 6837 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
47 fourierdlem95.p . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
48 fourierdlem95.x . . . . . . . . . 10 (𝜑𝑋 ∈ ran 𝑉)
4948adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ran 𝑉)
5020adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
5132adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
52 fourierdlem95.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
5352adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
54 fourierdlem95.v . . . . . . . . . 10 (𝜑𝑉 ∈ (𝑃𝑀))
5554adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ (𝑃𝑀))
56 fourierdlem95.fcn . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
5756adantlr 712 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
58 fourierdlem95.r . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
5958adantlr 712 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
60 fourierdlem95.l . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
6160adantlr 712 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
62 fveq2 6774 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
6362oveq1d 7290 . . . . . . . . . 10 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
6463cbvmptv 5187 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
65 eqid 2738 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
66 fourierdlem95.i . . . . . . . . 9 𝐼 = (ℝ D 𝐹)
67 fourierdlem95.ifn . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
6867adantlr 712 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
69 fourierdlem95.b . . . . . . . . . 10 (𝜑𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
7069adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
71 fourierdlem95.c . . . . . . . . . 10 (𝜑𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
7271adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
7347, 7, 49, 50, 51, 35, 36, 37, 38, 39, 40, 53, 55, 57, 59, 61, 64, 65, 66, 68, 70, 72fourierdlem88 43735 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
7446, 73eqeltrrd 2840 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
754, 45, 42, 74iblss 24969 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (𝐺𝑠)) ∈ 𝐿1)
7643, 75itgrecl 24962 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(𝐺𝑠) d𝑠 ∈ ℝ)
77 pire 25615 . . . . . 6 π ∈ ℝ
7877a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
79 pipos 25617 . . . . . . 7 0 < π
8077, 79gt0ne0ii 11511 . . . . . 6 π ≠ 0
8180a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
8276, 78, 81redivcld 11803 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(𝐺𝑠) d𝑠 / π) ∈ ℝ)
83 fourierlemenplusacver2eqitgdirker.e . . . . 5 𝐸 = (𝑛 ∈ ℕ ↦ (∫𝐴(𝐺𝑠) d𝑠 / π))
8483fvmpt2 6886 . . . 4 ((𝑛 ∈ ℕ ∧ (∫𝐴(𝐺𝑠) d𝑠 / π) ∈ ℝ) → (𝐸𝑛) = (∫𝐴(𝐺𝑠) d𝑠 / π))
851, 82, 84syl2anc 584 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (∫𝐴(𝐺𝑠) d𝑠 / π))
86 fourierdlem95.o . . . . . . 7 (𝜑𝑂 ∈ ℝ)
8786recnd 11003 . . . . . 6 (𝜑𝑂 ∈ ℂ)
88 2cnd 12051 . . . . . 6 (𝜑 → 2 ∈ ℂ)
89 2ne0 12077 . . . . . . 7 2 ≠ 0
9089a1i 11 . . . . . 6 (𝜑 → 2 ≠ 0)
9187, 88, 90divrecd 11754 . . . . 5 (𝜑 → (𝑂 / 2) = (𝑂 · (1 / 2)))
9291adantr 481 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑂 / 2) = (𝑂 · (1 / 2)))
93 fourierdlem95.itgdirker . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫𝐴((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
9493eqcomd 2744 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (1 / 2) = ∫𝐴((𝐷𝑛)‘𝑠) d𝑠)
9594oveq2d 7291 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑂 · (1 / 2)) = (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠))
9692, 95eqtrd 2778 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑂 / 2) = (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠))
9785, 96oveq12d 7293 . 2 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑂 / 2)) = ((∫𝐴(𝐺𝑠) d𝑠 / π) + (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠)))
982sselda 3921 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
9998adantlr 712 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
100 fourierdlem95.d . . . . . . . 8 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
101 eqid 2738 . . . . . . . 8 ((-π[,]π) ∖ {0}) = ((-π[,]π) ∖ {0})
1026, 8, 21, 33, 100, 35, 36, 37, 39, 40, 101fourierdlem66 43713 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π[,]π) ∖ {0})) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
10399, 102syldan 591 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
104103itgeq2dv 24946 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(𝐺𝑠) d𝑠 = ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠)
105104oveq1d 7290 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(𝐺𝑠) d𝑠 / π) = (∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠 / π))
10678recnd 11003 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
1076adantr 481 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 𝐹:ℝ⟶ℝ)
1088adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
109 difss 4066 . . . . . . . . . . . . . 14 ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)
11077renegcli 11282 . . . . . . . . . . . . . . 15 -π ∈ ℝ
111 iccssre 13161 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
112110, 77, 111mp2an 689 . . . . . . . . . . . . . 14 (-π[,]π) ⊆ ℝ
113109, 112sstri 3930 . . . . . . . . . . . . 13 ((-π[,]π) ∖ {0}) ⊆ ℝ
114113, 98sselid 3919 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
115108, 114readdcld 11004 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
116107, 115ffvelrnd 6962 . . . . . . . . . 10 ((𝜑𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
11721, 33ifcld 4505 . . . . . . . . . . 11 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
118117adantr 481 . . . . . . . . . 10 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
119116, 118resubcld 11403 . . . . . . . . 9 ((𝜑𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
120119adantlr 712 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
1211adantr 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑛 ∈ ℕ)
122114adantlr 712 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ ℝ)
123100dirkerre 43636 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
124121, 122, 123syl2anc 584 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
125120, 124remulcld 11005 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
126103eqcomd 2744 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (𝐺𝑠))
127126oveq1d 7290 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) / π) = ((𝐺𝑠) / π))
128 picn 25616 . . . . . . . . . . . . 13 π ∈ ℂ
129128a1i 11 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → π ∈ ℂ)
130125recnd 11003 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) ∈ ℂ)
13180a1i 11 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → π ≠ 0)
132129, 130, 129, 131div23d 11788 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) / π) = ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
13343recnd 11003 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) ∈ ℂ)
134133, 129, 131divrec2d 11755 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐺𝑠) / π) = ((1 / π) · (𝐺𝑠)))
135127, 132, 1343eqtr3rd 2787 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((1 / π) · (𝐺𝑠)) = ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
136128, 80dividi 11708 . . . . . . . . . . . 12 (π / π) = 1
137136a1i 11 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (π / π) = 1)
138137oveq1d 7290 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (1 · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
139130mulid2d 10993 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (1 · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)))
140135, 138, 1393eqtrrd 2783 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) = ((1 / π) · (𝐺𝑠)))
141140mpteq2dva 5174 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (𝑠𝐴 ↦ ((1 / π) · (𝐺𝑠))))
142106, 81reccld 11744 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / π) ∈ ℂ)
143142, 43, 75iblmulc2 24995 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ ((1 / π) · (𝐺𝑠))) ∈ 𝐿1)
144141, 143eqeltrd 2839 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
145106, 125, 144itgmulc2 24998 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠) = ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠)
146145eqcomd 2744 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠 = (π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠))
147146oveq1d 7290 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠 / π) = ((π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠) / π))
148125, 144itgcl 24948 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℂ)
149148, 106, 81divcan3d 11756 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠) / π) = ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠)
150105, 147, 1493eqtrd 2782 . . 3 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(𝐺𝑠) d𝑠 / π) = ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠)
15187adantr 481 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝑂 ∈ ℂ)
152112sseli 3917 . . . . . . 7 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
153152, 123sylan2 593 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
154153adantll 711 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
155110a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
156 ax-resscn 10928 . . . . . . . . . 10 ℝ ⊆ ℂ
157156a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → ℝ ⊆ ℂ)
158 ssid 3943 . . . . . . . . 9 ℂ ⊆ ℂ
159 cncfss 24062 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
160157, 158, 159sylancl 586 . . . . . . . 8 (𝑛 ∈ ℕ → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
161 eqid 2738 . . . . . . . . 9 (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠)) = (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠))
162100dirkerf 43638 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛):ℝ⟶ℝ)
163162feqmptd 6837 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐷𝑛) = (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠)))
164100dirkercncf 43648 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
165163, 164eqeltrrd 2840 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠)) ∈ (ℝ–cn→ℝ))
166112a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → (-π[,]π) ⊆ ℝ)
167 ssid 3943 . . . . . . . . . 10 ℝ ⊆ ℝ
168167a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → ℝ ⊆ ℝ)
169161, 165, 166, 168, 153cncfmptssg 43412 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℝ))
170160, 169sseldd 3922 . . . . . . 7 (𝑛 ∈ ℕ → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ))
171170adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ))
172 cniccibl 25005 . . . . . 6 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ)) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ 𝐿1)
173155, 78, 171, 172syl3anc 1370 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ 𝐿1)
1744, 45, 154, 173iblss 24969 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ ((𝐷𝑛)‘𝑠)) ∈ 𝐿1)
175151, 124, 174itgmulc2 24998 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠) = ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠)
176150, 175oveq12d 7293 . 2 ((𝜑𝑛 ∈ ℕ) → ((∫𝐴(𝐺𝑠) d𝑠 / π) + (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠)) = (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠))
17786ad2antrr 723 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑂 ∈ ℝ)
178177, 124remulcld 11005 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑂 · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
179151, 124, 174iblmulc2 24995 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (𝑂 · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
180125, 144, 178, 179itgadd 24989 . . 3 ((𝜑𝑛 ∈ ℕ) → ∫𝐴((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) d𝑠 = (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠))
181 fourierdlem95.ifeqo . . . . . . . . 9 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑂)
182181eqcomd 2744 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝑂 = if(0 < 𝑠, 𝑌, 𝑊))
183182adantlr 712 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑂 = if(0 < 𝑠, 𝑌, 𝑊))
184183oveq1d 7290 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑂 · ((𝐷𝑛)‘𝑠)) = (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠)))
185184oveq2d 7291 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))))
186116recnd 11003 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
187186adantlr 712 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
188118recnd 11003 . . . . . . . 8 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
189188adantlr 712 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
190124recnd 11003 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℂ)
191187, 189, 190subdird 11432 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) = (((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))))
192191oveq1d 7290 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) = ((((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))))
193187, 190mulcld 10995 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℂ)
194189, 190mulcld 10995 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠)) ∈ ℂ)
195193, 194npcand 11336 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
196185, 192, 1953eqtrd 2782 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
197196itgeq2dv 24946 . . 3 ((𝜑𝑛 ∈ ℕ) → ∫𝐴((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) d𝑠 = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
198180, 197eqtr3d 2780 . 2 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
19997, 176, 1983eqtrd 2782 1 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑂 / 2)) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  cdif 3884  wss 3887  ifcif 4459  {csn 4561   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  (,)cioo 13079  [,]cicc 13082  ...cfz 13239  ..^cfzo 13382   mod cmo 13589  sincsin 15773  πcpi 15776  TopOpenctopn 17132  fldccnfld 20597  cnccncf 24039  volcvol 24627  𝐿1cibl 24781  citg 24782   lim climc 25026   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-t1 22465  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834  df-limc 25030  df-dv 25031
This theorem is referenced by:  fourierdlem103  43750  fourierdlem104  43751
  Copyright terms: Public domain W3C validator