| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 2 | | fourierdlem95.ass |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ ((-π[,]π) ∖
{0})) |
| 3 | 2 | difss2d 4139 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ (-π[,]π)) |
| 4 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ (-π[,]π)) |
| 5 | 4 | sselda 3983 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → 𝑠 ∈ (-π[,]π)) |
| 6 | | fourierdlem95.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 7 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ) |
| 8 | | fourierdlem95.xre |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 9 | 8 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ ℝ) |
| 10 | | ioossre 13448 |
. . . . . . . . . . . . 13
⊢ (𝑋(,)+∞) ⊆
ℝ |
| 11 | 10 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋(,)+∞) ⊆
ℝ) |
| 12 | 6, 11 | fssresd 6775 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ) |
| 13 | | ioosscn 13449 |
. . . . . . . . . . . 12
⊢ (𝑋(,)+∞) ⊆
ℂ |
| 14 | 13 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋(,)+∞) ⊆
ℂ) |
| 15 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 16 | | pnfxr 11315 |
. . . . . . . . . . . . 13
⊢ +∞
∈ ℝ* |
| 17 | 16 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → +∞ ∈
ℝ*) |
| 18 | 8 | ltpnfd 13163 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 < +∞) |
| 19 | 15, 17, 8, 18 | lptioo1cn 45661 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞))) |
| 20 | | fourierdlem95.y |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
| 21 | 12, 14, 19, 20 | limcrecl 45644 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ ℝ) |
| 22 | 21 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑌 ∈ ℝ) |
| 23 | | ioossre 13448 |
. . . . . . . . . . . . 13
⊢
(-∞(,)𝑋)
⊆ ℝ |
| 24 | 23 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (-∞(,)𝑋) ⊆
ℝ) |
| 25 | 6, 24 | fssresd 6775 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ) |
| 26 | | ioosscn 13449 |
. . . . . . . . . . . 12
⊢
(-∞(,)𝑋)
⊆ ℂ |
| 27 | 26 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (-∞(,)𝑋) ⊆
ℂ) |
| 28 | | mnfxr 11318 |
. . . . . . . . . . . . 13
⊢ -∞
∈ ℝ* |
| 29 | 28 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → -∞ ∈
ℝ*) |
| 30 | 8 | mnfltd 13166 |
. . . . . . . . . . . 12
⊢ (𝜑 → -∞ < 𝑋) |
| 31 | 15, 29, 8, 30 | lptioo2cn 45660 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋))) |
| 32 | | fourierdlem95.w |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
| 33 | 25, 27, 31, 32 | limcrecl 45644 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ ℝ) |
| 34 | 33 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ ℝ) |
| 35 | | fourierdlem95.h |
. . . . . . . . 9
⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) |
| 36 | | fourierdlem95.k |
. . . . . . . . 9
⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) |
| 37 | | fourierdlem95.u |
. . . . . . . . 9
⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) |
| 38 | 1 | nnred 12281 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ) |
| 39 | | fourierdlem95.s |
. . . . . . . . 9
⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦
(sin‘((𝑛 + (1 / 2))
· 𝑠))) |
| 40 | | fourierdlem95.g |
. . . . . . . . 9
⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) |
| 41 | 7, 9, 22, 34, 35, 36, 37, 38, 39, 40 | fourierdlem67 46188 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐺:(-π[,]π)⟶ℝ) |
| 42 | 41 | ffvelcdmda 7104 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺‘𝑠) ∈ ℝ) |
| 43 | 5, 42 | syldan 591 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (𝐺‘𝑠) ∈ ℝ) |
| 44 | | fourierdlem95.admvol |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 45 | 44 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ dom vol) |
| 46 | 41 | feqmptd 6977 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺‘𝑠))) |
| 47 | | fourierdlem95.p |
. . . . . . . . 9
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 48 | | fourierdlem95.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ ran 𝑉) |
| 49 | 48 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ ran 𝑉) |
| 50 | 20 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
| 51 | 32 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
| 52 | | fourierdlem95.m |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 53 | 52 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ ℕ) |
| 54 | | fourierdlem95.v |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
| 55 | 54 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑉 ∈ (𝑃‘𝑀)) |
| 56 | | fourierdlem95.fcn |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) |
| 57 | 56 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) |
| 58 | | fourierdlem95.r |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) |
| 59 | 58 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) |
| 60 | | fourierdlem95.l |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) |
| 61 | 60 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) |
| 62 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → (𝑉‘𝑗) = (𝑉‘𝑖)) |
| 63 | 62 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → ((𝑉‘𝑗) − 𝑋) = ((𝑉‘𝑖) − 𝑋)) |
| 64 | 63 | cbvmptv 5255 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
| 65 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ
↑m (0...𝑚))
∣ (((𝑝‘0) =
-π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 66 | | fourierdlem95.i |
. . . . . . . . 9
⊢ 𝐼 = (ℝ D 𝐹) |
| 67 | | fourierdlem95.ifn |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) |
| 68 | 67 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) |
| 69 | | fourierdlem95.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
| 70 | 69 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
| 71 | | fourierdlem95.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
| 72 | 71 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
| 73 | 47, 7, 49, 50, 51, 35, 36, 37, 38, 39, 40, 53, 55, 57, 59, 61, 64, 65, 66, 68, 70, 72 | fourierdlem88 46209 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐺 ∈
𝐿1) |
| 74 | 46, 73 | eqeltrrd 2842 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ (𝐺‘𝑠)) ∈
𝐿1) |
| 75 | 4, 45, 42, 74 | iblss 25840 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ 𝐴 ↦ (𝐺‘𝑠)) ∈
𝐿1) |
| 76 | 43, 75 | itgrecl 25833 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫𝐴(𝐺‘𝑠) d𝑠 ∈ ℝ) |
| 77 | | pire 26500 |
. . . . . 6
⊢ π
∈ ℝ |
| 78 | 77 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → π ∈
ℝ) |
| 79 | | pipos 26502 |
. . . . . . 7
⊢ 0 <
π |
| 80 | 77, 79 | gt0ne0ii 11799 |
. . . . . 6
⊢ π ≠
0 |
| 81 | 80 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → π ≠
0) |
| 82 | 76, 78, 81 | redivcld 12095 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∫𝐴(𝐺‘𝑠) d𝑠 / π) ∈ ℝ) |
| 83 | | fourierlemenplusacver2eqitgdirker.e |
. . . . 5
⊢ 𝐸 = (𝑛 ∈ ℕ ↦ (∫𝐴(𝐺‘𝑠) d𝑠 / π)) |
| 84 | 83 | fvmpt2 7027 |
. . . 4
⊢ ((𝑛 ∈ ℕ ∧
(∫𝐴(𝐺‘𝑠) d𝑠 / π) ∈ ℝ) → (𝐸‘𝑛) = (∫𝐴(𝐺‘𝑠) d𝑠 / π)) |
| 85 | 1, 82, 84 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸‘𝑛) = (∫𝐴(𝐺‘𝑠) d𝑠 / π)) |
| 86 | | fourierdlem95.o |
. . . . . . 7
⊢ (𝜑 → 𝑂 ∈ ℝ) |
| 87 | 86 | recnd 11289 |
. . . . . 6
⊢ (𝜑 → 𝑂 ∈ ℂ) |
| 88 | | 2cnd 12344 |
. . . . . 6
⊢ (𝜑 → 2 ∈
ℂ) |
| 89 | | 2ne0 12370 |
. . . . . . 7
⊢ 2 ≠
0 |
| 90 | 89 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 2 ≠ 0) |
| 91 | 87, 88, 90 | divrecd 12046 |
. . . . 5
⊢ (𝜑 → (𝑂 / 2) = (𝑂 · (1 / 2))) |
| 92 | 91 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑂 / 2) = (𝑂 · (1 / 2))) |
| 93 | | fourierdlem95.itgdirker |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫𝐴((𝐷‘𝑛)‘𝑠) d𝑠 = (1 / 2)) |
| 94 | 93 | eqcomd 2743 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 2) = ∫𝐴((𝐷‘𝑛)‘𝑠) d𝑠) |
| 95 | 94 | oveq2d 7447 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑂 · (1 / 2)) = (𝑂 · ∫𝐴((𝐷‘𝑛)‘𝑠) d𝑠)) |
| 96 | 92, 95 | eqtrd 2777 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑂 / 2) = (𝑂 · ∫𝐴((𝐷‘𝑛)‘𝑠) d𝑠)) |
| 97 | 85, 96 | oveq12d 7449 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐸‘𝑛) + (𝑂 / 2)) = ((∫𝐴(𝐺‘𝑠) d𝑠 / π) + (𝑂 · ∫𝐴((𝐷‘𝑛)‘𝑠) d𝑠))) |
| 98 | 2 | sselda 3983 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → 𝑠 ∈ ((-π[,]π) ∖
{0})) |
| 99 | 98 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → 𝑠 ∈ ((-π[,]π) ∖
{0})) |
| 100 | | fourierdlem95.d |
. . . . . . . 8
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) ·
(sin‘(𝑠 /
2))))))) |
| 101 | | eqid 2737 |
. . . . . . . 8
⊢
((-π[,]π) ∖ {0}) = ((-π[,]π) ∖
{0}) |
| 102 | 6, 8, 21, 33, 100, 35, 36, 37, 39, 40, 101 | fourierdlem66 46187 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π[,]π) ∖ {0})) →
(𝐺‘𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)))) |
| 103 | 99, 102 | syldan 591 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (𝐺‘𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)))) |
| 104 | 103 | itgeq2dv 25817 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫𝐴(𝐺‘𝑠) d𝑠 = ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠))) d𝑠) |
| 105 | 104 | oveq1d 7446 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∫𝐴(𝐺‘𝑠) d𝑠 / π) = (∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠))) d𝑠 / π)) |
| 106 | 78 | recnd 11289 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → π ∈
ℂ) |
| 107 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → 𝐹:ℝ⟶ℝ) |
| 108 | 8 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → 𝑋 ∈ ℝ) |
| 109 | | difss 4136 |
. . . . . . . . . . . . . 14
⊢
((-π[,]π) ∖ {0}) ⊆ (-π[,]π) |
| 110 | 77 | renegcli 11570 |
. . . . . . . . . . . . . . 15
⊢ -π
∈ ℝ |
| 111 | | iccssre 13469 |
. . . . . . . . . . . . . . 15
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆
ℝ) |
| 112 | 110, 77, 111 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢
(-π[,]π) ⊆ ℝ |
| 113 | 109, 112 | sstri 3993 |
. . . . . . . . . . . . 13
⊢
((-π[,]π) ∖ {0}) ⊆ ℝ |
| 114 | 113, 98 | sselid 3981 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → 𝑠 ∈ ℝ) |
| 115 | 108, 114 | readdcld 11290 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → (𝑋 + 𝑠) ∈ ℝ) |
| 116 | 107, 115 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ) |
| 117 | 21, 33 | ifcld 4572 |
. . . . . . . . . . 11
⊢ (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ) |
| 118 | 117 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ) |
| 119 | 116, 118 | resubcld 11691 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ) |
| 120 | 119 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ) |
| 121 | 1 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → 𝑛 ∈ ℕ) |
| 122 | 114 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → 𝑠 ∈ ℝ) |
| 123 | 100 | dirkerre 46110 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷‘𝑛)‘𝑠) ∈ ℝ) |
| 124 | 121, 122,
123 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → ((𝐷‘𝑛)‘𝑠) ∈ ℝ) |
| 125 | 120, 124 | remulcld 11291 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) ∈ ℝ) |
| 126 | 103 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠))) = (𝐺‘𝑠)) |
| 127 | 126 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → ((π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠))) / π) = ((𝐺‘𝑠) / π)) |
| 128 | | picn 26501 |
. . . . . . . . . . . . 13
⊢ π
∈ ℂ |
| 129 | 128 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → π ∈
ℂ) |
| 130 | 125 | recnd 11289 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) ∈ ℂ) |
| 131 | 80 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → π ≠ 0) |
| 132 | 129, 130,
129, 131 | div23d 12080 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → ((π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠))) / π) = ((π / π) ·
(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)))) |
| 133 | 43 | recnd 11289 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (𝐺‘𝑠) ∈ ℂ) |
| 134 | 133, 129,
131 | divrec2d 12047 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → ((𝐺‘𝑠) / π) = ((1 / π) · (𝐺‘𝑠))) |
| 135 | 127, 132,
134 | 3eqtr3rd 2786 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → ((1 / π) · (𝐺‘𝑠)) = ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)))) |
| 136 | 128, 80 | dividi 12000 |
. . . . . . . . . . . 12
⊢ (π /
π) = 1 |
| 137 | 136 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (π / π) = 1) |
| 138 | 137 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠))) = (1 · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)))) |
| 139 | 130 | mullidd 11279 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (1 · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠))) |
| 140 | 135, 138,
139 | 3eqtrrd 2782 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) = ((1 / π) · (𝐺‘𝑠))) |
| 141 | 140 | mpteq2dva 5242 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ 𝐴 ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠))) = (𝑠 ∈ 𝐴 ↦ ((1 / π) · (𝐺‘𝑠)))) |
| 142 | 106, 81 | reccld 12036 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / π) ∈
ℂ) |
| 143 | 142, 43, 75 | iblmulc2 25866 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ 𝐴 ↦ ((1 / π) · (𝐺‘𝑠))) ∈
𝐿1) |
| 144 | 141, 143 | eqeltrd 2841 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ 𝐴 ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠))) ∈
𝐿1) |
| 145 | 106, 125,
144 | itgmulc2 25869 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (π ·
∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) = ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠))) d𝑠) |
| 146 | 145 | eqcomd 2743 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠))) d𝑠 = (π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) d𝑠)) |
| 147 | 146 | oveq1d 7446 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠))) d𝑠 / π) = ((π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) / π)) |
| 148 | 125, 144 | itgcl 25819 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 ∈ ℂ) |
| 149 | 148, 106,
81 | divcan3d 12048 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((π ·
∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) / π) = ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
| 150 | 105, 147,
149 | 3eqtrd 2781 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∫𝐴(𝐺‘𝑠) d𝑠 / π) = ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
| 151 | 87 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑂 ∈ ℂ) |
| 152 | 112 | sseli 3979 |
. . . . . . 7
⊢ (𝑠 ∈ (-π[,]π) →
𝑠 ∈
ℝ) |
| 153 | 152, 123 | sylan2 593 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) →
((𝐷‘𝑛)‘𝑠) ∈ ℝ) |
| 154 | 153 | adantll 714 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷‘𝑛)‘𝑠) ∈ ℝ) |
| 155 | 110 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → -π ∈
ℝ) |
| 156 | | ax-resscn 11212 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℂ |
| 157 | 156 | a1i 11 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → ℝ
⊆ ℂ) |
| 158 | | ssid 4006 |
. . . . . . . . 9
⊢ ℂ
⊆ ℂ |
| 159 | | cncfss 24925 |
. . . . . . . . 9
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) →
((-π[,]π)–cn→ℝ)
⊆ ((-π[,]π)–cn→ℂ)) |
| 160 | 157, 158,
159 | sylancl 586 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
((-π[,]π)–cn→ℝ)
⊆ ((-π[,]π)–cn→ℂ)) |
| 161 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℝ ↦ ((𝐷‘𝑛)‘𝑠)) = (𝑠 ∈ ℝ ↦ ((𝐷‘𝑛)‘𝑠)) |
| 162 | 100 | dirkerf 46112 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (𝐷‘𝑛):ℝ⟶ℝ) |
| 163 | 162 | feqmptd 6977 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (𝐷‘𝑛) = (𝑠 ∈ ℝ ↦ ((𝐷‘𝑛)‘𝑠))) |
| 164 | 100 | dirkercncf 46122 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (𝐷‘𝑛) ∈ (ℝ–cn→ℝ)) |
| 165 | 163, 164 | eqeltrrd 2842 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑛)‘𝑠)) ∈ (ℝ–cn→ℝ)) |
| 166 | 112 | a1i 11 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(-π[,]π) ⊆ ℝ) |
| 167 | | ssid 4006 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℝ |
| 168 | 167 | a1i 11 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → ℝ
⊆ ℝ) |
| 169 | 161, 165,
166, 168, 153 | cncfmptssg 45886 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → (𝑠 ∈ (-π[,]π) ↦
((𝐷‘𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℝ)) |
| 170 | 160, 169 | sseldd 3984 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (𝑠 ∈ (-π[,]π) ↦
((𝐷‘𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ)) |
| 171 | 170 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷‘𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ)) |
| 172 | | cniccibl 25876 |
. . . . . 6
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ ∧ (𝑠 ∈ (-π[,]π) ↦ ((𝐷‘𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ)) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷‘𝑛)‘𝑠)) ∈
𝐿1) |
| 173 | 155, 78, 171, 172 | syl3anc 1373 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷‘𝑛)‘𝑠)) ∈
𝐿1) |
| 174 | 4, 45, 154, 173 | iblss 25840 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ 𝐴 ↦ ((𝐷‘𝑛)‘𝑠)) ∈
𝐿1) |
| 175 | 151, 124,
174 | itgmulc2 25869 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑂 · ∫𝐴((𝐷‘𝑛)‘𝑠) d𝑠) = ∫𝐴(𝑂 · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
| 176 | 150, 175 | oveq12d 7449 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((∫𝐴(𝐺‘𝑠) d𝑠 / π) + (𝑂 · ∫𝐴((𝐷‘𝑛)‘𝑠) d𝑠)) = (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷‘𝑛)‘𝑠)) d𝑠)) |
| 177 | 86 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → 𝑂 ∈ ℝ) |
| 178 | 177, 124 | remulcld 11291 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (𝑂 · ((𝐷‘𝑛)‘𝑠)) ∈ ℝ) |
| 179 | 151, 124,
174 | iblmulc2 25866 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ 𝐴 ↦ (𝑂 · ((𝐷‘𝑛)‘𝑠))) ∈
𝐿1) |
| 180 | 125, 144,
178, 179 | itgadd 25860 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫𝐴((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) + (𝑂 · ((𝐷‘𝑛)‘𝑠))) d𝑠 = (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷‘𝑛)‘𝑠)) d𝑠)) |
| 181 | | fourierdlem95.ifeqo |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑂) |
| 182 | 181 | eqcomd 2743 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → 𝑂 = if(0 < 𝑠, 𝑌, 𝑊)) |
| 183 | 182 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → 𝑂 = if(0 < 𝑠, 𝑌, 𝑊)) |
| 184 | 183 | oveq1d 7446 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (𝑂 · ((𝐷‘𝑛)‘𝑠)) = (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷‘𝑛)‘𝑠))) |
| 185 | 184 | oveq2d 7447 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) + (𝑂 · ((𝐷‘𝑛)‘𝑠))) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷‘𝑛)‘𝑠)))) |
| 186 | 116 | recnd 11289 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 187 | 186 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 188 | 118 | recnd 11289 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ) |
| 189 | 188 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ) |
| 190 | 124 | recnd 11289 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → ((𝐷‘𝑛)‘𝑠) ∈ ℂ) |
| 191 | 187, 189,
190 | subdird 11720 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) = (((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷‘𝑛)‘𝑠)))) |
| 192 | 191 | oveq1d 7446 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷‘𝑛)‘𝑠))) = ((((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷‘𝑛)‘𝑠))) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷‘𝑛)‘𝑠)))) |
| 193 | 187, 190 | mulcld 11281 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) ∈ ℂ) |
| 194 | 189, 190 | mulcld 11281 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷‘𝑛)‘𝑠)) ∈ ℂ) |
| 195 | 193, 194 | npcand 11624 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → ((((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷‘𝑛)‘𝑠))) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷‘𝑛)‘𝑠))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
| 196 | 185, 192,
195 | 3eqtrd 2781 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) + (𝑂 · ((𝐷‘𝑛)‘𝑠))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
| 197 | 196 | itgeq2dv 25817 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫𝐴((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) + (𝑂 · ((𝐷‘𝑛)‘𝑠))) d𝑠 = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
| 198 | 180, 197 | eqtr3d 2779 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷‘𝑛)‘𝑠)) d𝑠) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
| 199 | 97, 176, 198 | 3eqtrd 2781 |
1
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐸‘𝑛) + (𝑂 / 2)) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |