Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem95 Structured version   Visualization version   GIF version

Theorem fourierdlem95 41055
Description: Algebraic manipulation of integrals, used by other lemmas. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem95.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem95.xre (𝜑𝑋 ∈ ℝ)
fourierdlem95.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem95.m (𝜑𝑀 ∈ ℕ)
fourierdlem95.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem95.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem95.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem95.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem95.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem95.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem95.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem95.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem95.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem95.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem95.i 𝐼 = (ℝ D 𝐹)
fourierdlem95.ifn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
fourierdlem95.b (𝜑𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem95.c (𝜑𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem95.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem95.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem95.admvol (𝜑𝐴 ∈ dom vol)
fourierdlem95.ass (𝜑𝐴 ⊆ ((-π[,]π) ∖ {0}))
fourierlemenplusacver2eqitgdirker.e 𝐸 = (𝑛 ∈ ℕ ↦ (∫𝐴(𝐺𝑠) d𝑠 / π))
fourierdlem95.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem95.o (𝜑𝑂 ∈ ℝ)
fourierdlem95.ifeqo ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑂)
fourierdlem95.itgdirker ((𝜑𝑛 ∈ ℕ) → ∫𝐴((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
Assertion
Ref Expression
fourierdlem95 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑂 / 2)) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝐷,𝑠   𝐹,𝑠   𝑖,𝐺,𝑠   𝐻,𝑠   𝐾,𝑠   𝐿,𝑠   𝑖,𝑀,𝑝,𝑚   𝑀,𝑠   𝑂,𝑠   𝑅,𝑠   𝑆,𝑠   𝑖,𝑉,𝑝   𝑉,𝑠   𝑊,𝑠   𝑖,𝑋,𝑝,𝑚   𝑋,𝑠   𝑌,𝑠   𝑖,𝑛,𝑠   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑝)   𝐴(𝑖,𝑚,𝑛,𝑝)   𝐵(𝑖,𝑚,𝑛,𝑝)   𝐶(𝑖,𝑚,𝑛,𝑝)   𝐷(𝑖,𝑚,𝑛,𝑝)   𝑃(𝑖,𝑚,𝑛,𝑠,𝑝)   𝑅(𝑖,𝑚,𝑛,𝑝)   𝑆(𝑖,𝑚,𝑛,𝑝)   𝑈(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐸(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐹(𝑖,𝑚,𝑛,𝑝)   𝐺(𝑚,𝑛,𝑝)   𝐻(𝑖,𝑚,𝑛,𝑝)   𝐼(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐾(𝑖,𝑚,𝑛,𝑝)   𝐿(𝑖,𝑚,𝑛,𝑝)   𝑀(𝑛)   𝑂(𝑖,𝑚,𝑛,𝑝)   𝑉(𝑚,𝑛)   𝑊(𝑖,𝑚,𝑛,𝑝)   𝑋(𝑛)   𝑌(𝑖,𝑚,𝑛,𝑝)

Proof of Theorem fourierdlem95
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2 fourierdlem95.ass . . . . . . . . . 10 (𝜑𝐴 ⊆ ((-π[,]π) ∖ {0}))
32difss2d 3902 . . . . . . . . 9 (𝜑𝐴 ⊆ (-π[,]π))
43adantr 472 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ (-π[,]π))
54sselda 3761 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ (-π[,]π))
6 fourierdlem95.f . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
76adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
8 fourierdlem95.xre . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
98adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
10 ioossre 12437 . . . . . . . . . . . . 13 (𝑋(,)+∞) ⊆ ℝ
1110a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
126, 11fssresd 6253 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
13 ioosscn 40358 . . . . . . . . . . . 12 (𝑋(,)+∞) ⊆ ℂ
1413a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
15 eqid 2765 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
16 pnfxr 10346 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
1716a1i 11 . . . . . . . . . . . 12 (𝜑 → +∞ ∈ ℝ*)
188ltpnfd 12155 . . . . . . . . . . . 12 (𝜑𝑋 < +∞)
1915, 17, 8, 18lptioo1cn 40516 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
20 fourierdlem95.y . . . . . . . . . . 11 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
2112, 14, 19, 20limcrecl 40499 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
2221adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
23 ioossre 12437 . . . . . . . . . . . . 13 (-∞(,)𝑋) ⊆ ℝ
2423a1i 11 . . . . . . . . . . . 12 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
256, 24fssresd 6253 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
26 ioosscn 40358 . . . . . . . . . . . 12 (-∞(,)𝑋) ⊆ ℂ
2726a1i 11 . . . . . . . . . . 11 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
28 mnfxr 10350 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
2928a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
308mnfltd 12158 . . . . . . . . . . . 12 (𝜑 → -∞ < 𝑋)
3115, 29, 8, 30lptioo2cn 40515 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
32 fourierdlem95.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
3325, 27, 31, 32limcrecl 40499 . . . . . . . . . 10 (𝜑𝑊 ∈ ℝ)
3433adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
35 fourierdlem95.h . . . . . . . . 9 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
36 fourierdlem95.k . . . . . . . . 9 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
37 fourierdlem95.u . . . . . . . . 9 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
381nnred 11291 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
39 fourierdlem95.s . . . . . . . . 9 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
40 fourierdlem95.g . . . . . . . . 9 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
417, 9, 22, 34, 35, 36, 37, 38, 39, 40fourierdlem67 41027 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺:(-π[,]π)⟶ℝ)
4241ffvelrnda 6549 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
435, 42syldan 585 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) ∈ ℝ)
44 fourierdlem95.admvol . . . . . . . 8 (𝜑𝐴 ∈ dom vol)
4544adantr 472 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
4641feqmptd 6438 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
47 fourierdlem95.p . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
48 fourierdlem95.x . . . . . . . . . 10 (𝜑𝑋 ∈ ran 𝑉)
4948adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ran 𝑉)
5020adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
5132adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
52 fourierdlem95.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
5352adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
54 fourierdlem95.v . . . . . . . . . 10 (𝜑𝑉 ∈ (𝑃𝑀))
5554adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ (𝑃𝑀))
56 fourierdlem95.fcn . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
5756adantlr 706 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
58 fourierdlem95.r . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
5958adantlr 706 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
60 fourierdlem95.l . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
6160adantlr 706 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
62 fveq2 6375 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
6362oveq1d 6857 . . . . . . . . . 10 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
6463cbvmptv 4909 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
65 eqid 2765 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
66 fourierdlem95.i . . . . . . . . 9 𝐼 = (ℝ D 𝐹)
67 fourierdlem95.ifn . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
6867adantlr 706 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
69 fourierdlem95.b . . . . . . . . . 10 (𝜑𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
7069adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
71 fourierdlem95.c . . . . . . . . . 10 (𝜑𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
7271adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
7347, 7, 49, 50, 51, 35, 36, 37, 38, 39, 40, 53, 55, 57, 59, 61, 64, 65, 66, 68, 70, 72fourierdlem88 41048 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
7446, 73eqeltrrd 2845 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
754, 45, 42, 74iblss 23862 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (𝐺𝑠)) ∈ 𝐿1)
7643, 75itgrecl 23855 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(𝐺𝑠) d𝑠 ∈ ℝ)
77 pire 24502 . . . . . 6 π ∈ ℝ
7877a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
79 pipos 24504 . . . . . . 7 0 < π
8077, 79gt0ne0ii 10818 . . . . . 6 π ≠ 0
8180a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
8276, 78, 81redivcld 11107 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(𝐺𝑠) d𝑠 / π) ∈ ℝ)
83 fourierlemenplusacver2eqitgdirker.e . . . . 5 𝐸 = (𝑛 ∈ ℕ ↦ (∫𝐴(𝐺𝑠) d𝑠 / π))
8483fvmpt2 6480 . . . 4 ((𝑛 ∈ ℕ ∧ (∫𝐴(𝐺𝑠) d𝑠 / π) ∈ ℝ) → (𝐸𝑛) = (∫𝐴(𝐺𝑠) d𝑠 / π))
851, 82, 84syl2anc 579 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (∫𝐴(𝐺𝑠) d𝑠 / π))
86 fourierdlem95.o . . . . . . 7 (𝜑𝑂 ∈ ℝ)
8786recnd 10322 . . . . . 6 (𝜑𝑂 ∈ ℂ)
88 2cnd 11350 . . . . . 6 (𝜑 → 2 ∈ ℂ)
89 2ne0 11383 . . . . . . 7 2 ≠ 0
9089a1i 11 . . . . . 6 (𝜑 → 2 ≠ 0)
9187, 88, 90divrecd 11058 . . . . 5 (𝜑 → (𝑂 / 2) = (𝑂 · (1 / 2)))
9291adantr 472 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑂 / 2) = (𝑂 · (1 / 2)))
93 fourierdlem95.itgdirker . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫𝐴((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
9493eqcomd 2771 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (1 / 2) = ∫𝐴((𝐷𝑛)‘𝑠) d𝑠)
9594oveq2d 6858 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑂 · (1 / 2)) = (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠))
9692, 95eqtrd 2799 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑂 / 2) = (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠))
9785, 96oveq12d 6860 . 2 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑂 / 2)) = ((∫𝐴(𝐺𝑠) d𝑠 / π) + (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠)))
982sselda 3761 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
9998adantlr 706 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
100 fourierdlem95.d . . . . . . . 8 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
101 eqid 2765 . . . . . . . 8 ((-π[,]π) ∖ {0}) = ((-π[,]π) ∖ {0})
1026, 8, 21, 33, 100, 35, 36, 37, 39, 40, 101fourierdlem66 41026 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π[,]π) ∖ {0})) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
10399, 102syldan 585 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
104103itgeq2dv 23839 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(𝐺𝑠) d𝑠 = ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠)
105104oveq1d 6857 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(𝐺𝑠) d𝑠 / π) = (∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠 / π))
10678recnd 10322 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
1076adantr 472 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 𝐹:ℝ⟶ℝ)
1088adantr 472 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
109 difss 3899 . . . . . . . . . . . . . 14 ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)
11077renegcli 10596 . . . . . . . . . . . . . . 15 -π ∈ ℝ
111 iccssre 12457 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
112110, 77, 111mp2an 683 . . . . . . . . . . . . . 14 (-π[,]π) ⊆ ℝ
113109, 112sstri 3770 . . . . . . . . . . . . 13 ((-π[,]π) ∖ {0}) ⊆ ℝ
114113, 98sseldi 3759 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
115108, 114readdcld 10323 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
116107, 115ffvelrnd 6550 . . . . . . . . . 10 ((𝜑𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
11721, 33ifcld 4288 . . . . . . . . . . 11 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
118117adantr 472 . . . . . . . . . 10 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
119116, 118resubcld 10712 . . . . . . . . 9 ((𝜑𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
120119adantlr 706 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
1211adantr 472 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑛 ∈ ℕ)
122114adantlr 706 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ ℝ)
123100dirkerre 40949 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
124121, 122, 123syl2anc 579 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
125120, 124remulcld 10324 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
126103eqcomd 2771 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (𝐺𝑠))
127126oveq1d 6857 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) / π) = ((𝐺𝑠) / π))
128 picn 24503 . . . . . . . . . . . . 13 π ∈ ℂ
129128a1i 11 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → π ∈ ℂ)
130125recnd 10322 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) ∈ ℂ)
13180a1i 11 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → π ≠ 0)
132129, 130, 129, 131div23d 11092 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) / π) = ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
13343recnd 10322 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) ∈ ℂ)
134133, 129, 131divrec2d 11059 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐺𝑠) / π) = ((1 / π) · (𝐺𝑠)))
135127, 132, 1343eqtr3rd 2808 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((1 / π) · (𝐺𝑠)) = ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
136128, 80dividi 11012 . . . . . . . . . . . 12 (π / π) = 1
137136a1i 11 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (π / π) = 1)
138137oveq1d 6857 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (1 · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
139130mulid2d 10312 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (1 · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)))
140135, 138, 1393eqtrrd 2804 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) = ((1 / π) · (𝐺𝑠)))
141140mpteq2dva 4903 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (𝑠𝐴 ↦ ((1 / π) · (𝐺𝑠))))
142106, 81reccld 11048 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / π) ∈ ℂ)
143142, 43, 75iblmulc2 23888 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ ((1 / π) · (𝐺𝑠))) ∈ 𝐿1)
144141, 143eqeltrd 2844 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
145106, 125, 144itgmulc2 23891 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠) = ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠)
146145eqcomd 2771 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠 = (π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠))
147146oveq1d 6857 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠 / π) = ((π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠) / π))
148125, 144itgcl 23841 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℂ)
149148, 106, 81divcan3d 11060 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠) / π) = ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠)
150105, 147, 1493eqtrd 2803 . . 3 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(𝐺𝑠) d𝑠 / π) = ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠)
15187adantr 472 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝑂 ∈ ℂ)
152112sseli 3757 . . . . . . 7 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
153152, 123sylan2 586 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
154153adantll 705 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
155110a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
156 ax-resscn 10246 . . . . . . . . . 10 ℝ ⊆ ℂ
157156a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → ℝ ⊆ ℂ)
158 ssid 3783 . . . . . . . . 9 ℂ ⊆ ℂ
159 cncfss 22981 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
160157, 158, 159sylancl 580 . . . . . . . 8 (𝑛 ∈ ℕ → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
161 eqid 2765 . . . . . . . . 9 (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠)) = (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠))
162100dirkerf 40951 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛):ℝ⟶ℝ)
163162feqmptd 6438 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐷𝑛) = (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠)))
164100dirkercncf 40961 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
165163, 164eqeltrrd 2845 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠)) ∈ (ℝ–cn→ℝ))
166112a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → (-π[,]π) ⊆ ℝ)
167 ssid 3783 . . . . . . . . . 10 ℝ ⊆ ℝ
168167a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → ℝ ⊆ ℝ)
169161, 165, 166, 168, 153cncfmptssg 40721 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℝ))
170160, 169sseldd 3762 . . . . . . 7 (𝑛 ∈ ℕ → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ))
171170adantl 473 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ))
172 cniccibl 23898 . . . . . 6 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ)) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ 𝐿1)
173155, 78, 171, 172syl3anc 1490 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ 𝐿1)
1744, 45, 154, 173iblss 23862 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ ((𝐷𝑛)‘𝑠)) ∈ 𝐿1)
175151, 124, 174itgmulc2 23891 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠) = ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠)
176150, 175oveq12d 6860 . 2 ((𝜑𝑛 ∈ ℕ) → ((∫𝐴(𝐺𝑠) d𝑠 / π) + (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠)) = (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠))
17786ad2antrr 717 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑂 ∈ ℝ)
178177, 124remulcld 10324 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑂 · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
179151, 124, 174iblmulc2 23888 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (𝑂 · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
180125, 144, 178, 179itgadd 23882 . . 3 ((𝜑𝑛 ∈ ℕ) → ∫𝐴((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) d𝑠 = (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠))
181 fourierdlem95.ifeqo . . . . . . . . 9 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑂)
182181eqcomd 2771 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝑂 = if(0 < 𝑠, 𝑌, 𝑊))
183182adantlr 706 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑂 = if(0 < 𝑠, 𝑌, 𝑊))
184183oveq1d 6857 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑂 · ((𝐷𝑛)‘𝑠)) = (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠)))
185184oveq2d 6858 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))))
186116recnd 10322 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
187186adantlr 706 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
188118recnd 10322 . . . . . . . 8 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
189188adantlr 706 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
190124recnd 10322 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℂ)
191187, 189, 190subdird 10741 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) = (((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))))
192191oveq1d 6857 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) = ((((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))))
193187, 190mulcld 10314 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℂ)
194189, 190mulcld 10314 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠)) ∈ ℂ)
195193, 194npcand 10650 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
196185, 192, 1953eqtrd 2803 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
197196itgeq2dv 23839 . . 3 ((𝜑𝑛 ∈ ℕ) → ∫𝐴((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) d𝑠 = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
198180, 197eqtr3d 2801 . 2 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
19997, 176, 1983eqtrd 2803 1 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑂 / 2)) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  {crab 3059  cdif 3729  wss 3732  ifcif 4243  {csn 4334   class class class wbr 4809  cmpt 4888  dom cdm 5277  ran crn 5278  cres 5279  wf 6064  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  +∞cpnf 10325  -∞cmnf 10326  *cxr 10327   < clt 10328  cmin 10520  -cneg 10521   / cdiv 10938  cn 11274  2c2 11327  (,)cioo 12377  [,]cicc 12380  ...cfz 12533  ..^cfzo 12673   mod cmo 12876  sincsin 15076  πcpi 15079  TopOpenctopn 16348  fldccnfld 20019  cnccncf 22958  volcvol 23521  𝐿1cibl 23675  citg 23676   lim climc 23917   D cdv 23918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cc 9510  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-symdif 4005  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-ofr 7096  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-omul 7769  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-acn 9019  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14092  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-limsup 14487  df-clim 14504  df-rlim 14505  df-sum 14702  df-ef 15080  df-sin 15082  df-cos 15083  df-pi 15085  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-t1 21398  df-haus 21399  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-ovol 23522  df-vol 23523  df-mbf 23677  df-itg1 23678  df-itg2 23679  df-ibl 23680  df-itg 23681  df-0p 23728  df-limc 23921  df-dv 23922
This theorem is referenced by:  fourierdlem103  41063  fourierdlem104  41064
  Copyright terms: Public domain W3C validator