Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem95 Structured version   Visualization version   GIF version

Theorem fourierdlem95 46247
Description: Algebraic manipulation of integrals, used by other lemmas. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem95.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem95.xre (𝜑𝑋 ∈ ℝ)
fourierdlem95.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem95.m (𝜑𝑀 ∈ ℕ)
fourierdlem95.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem95.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem95.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem95.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem95.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem95.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem95.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem95.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem95.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem95.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem95.i 𝐼 = (ℝ D 𝐹)
fourierdlem95.ifn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
fourierdlem95.b (𝜑𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem95.c (𝜑𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem95.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem95.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem95.admvol (𝜑𝐴 ∈ dom vol)
fourierdlem95.ass (𝜑𝐴 ⊆ ((-π[,]π) ∖ {0}))
fourierlemenplusacver2eqitgdirker.e 𝐸 = (𝑛 ∈ ℕ ↦ (∫𝐴(𝐺𝑠) d𝑠 / π))
fourierdlem95.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem95.o (𝜑𝑂 ∈ ℝ)
fourierdlem95.ifeqo ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑂)
fourierdlem95.itgdirker ((𝜑𝑛 ∈ ℕ) → ∫𝐴((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
Assertion
Ref Expression
fourierdlem95 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑂 / 2)) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝐷,𝑠   𝐹,𝑠   𝑖,𝐺,𝑠   𝐻,𝑠   𝐾,𝑠   𝐿,𝑠   𝑖,𝑀,𝑝,𝑚   𝑀,𝑠   𝑂,𝑠   𝑅,𝑠   𝑆,𝑠   𝑖,𝑉,𝑝   𝑉,𝑠   𝑊,𝑠   𝑖,𝑋,𝑝,𝑚   𝑋,𝑠   𝑌,𝑠   𝑖,𝑛,𝑠   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑝)   𝐴(𝑖,𝑚,𝑛,𝑝)   𝐵(𝑖,𝑚,𝑛,𝑝)   𝐶(𝑖,𝑚,𝑛,𝑝)   𝐷(𝑖,𝑚,𝑛,𝑝)   𝑃(𝑖,𝑚,𝑛,𝑠,𝑝)   𝑅(𝑖,𝑚,𝑛,𝑝)   𝑆(𝑖,𝑚,𝑛,𝑝)   𝑈(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐸(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐹(𝑖,𝑚,𝑛,𝑝)   𝐺(𝑚,𝑛,𝑝)   𝐻(𝑖,𝑚,𝑛,𝑝)   𝐼(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐾(𝑖,𝑚,𝑛,𝑝)   𝐿(𝑖,𝑚,𝑛,𝑝)   𝑀(𝑛)   𝑂(𝑖,𝑚,𝑛,𝑝)   𝑉(𝑚,𝑛)   𝑊(𝑖,𝑚,𝑛,𝑝)   𝑋(𝑛)   𝑌(𝑖,𝑚,𝑛,𝑝)

Proof of Theorem fourierdlem95
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2 fourierdlem95.ass . . . . . . . . . 10 (𝜑𝐴 ⊆ ((-π[,]π) ∖ {0}))
32difss2d 4086 . . . . . . . . 9 (𝜑𝐴 ⊆ (-π[,]π))
43adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ (-π[,]π))
54sselda 3929 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ (-π[,]π))
6 fourierdlem95.f . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
76adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
8 fourierdlem95.xre . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
98adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
10 ioossre 13307 . . . . . . . . . . . . 13 (𝑋(,)+∞) ⊆ ℝ
1110a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
126, 11fssresd 6690 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
13 ioosscn 13308 . . . . . . . . . . . 12 (𝑋(,)+∞) ⊆ ℂ
1413a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
15 eqid 2731 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
16 pnfxr 11166 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
1716a1i 11 . . . . . . . . . . . 12 (𝜑 → +∞ ∈ ℝ*)
188ltpnfd 13020 . . . . . . . . . . . 12 (𝜑𝑋 < +∞)
1915, 17, 8, 18lptioo1cn 45692 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
20 fourierdlem95.y . . . . . . . . . . 11 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
2112, 14, 19, 20limcrecl 45677 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
2221adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
23 ioossre 13307 . . . . . . . . . . . . 13 (-∞(,)𝑋) ⊆ ℝ
2423a1i 11 . . . . . . . . . . . 12 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
256, 24fssresd 6690 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
26 ioosscn 13308 . . . . . . . . . . . 12 (-∞(,)𝑋) ⊆ ℂ
2726a1i 11 . . . . . . . . . . 11 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
28 mnfxr 11169 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
2928a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
308mnfltd 13023 . . . . . . . . . . . 12 (𝜑 → -∞ < 𝑋)
3115, 29, 8, 30lptioo2cn 45691 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
32 fourierdlem95.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
3325, 27, 31, 32limcrecl 45677 . . . . . . . . . 10 (𝜑𝑊 ∈ ℝ)
3433adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
35 fourierdlem95.h . . . . . . . . 9 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
36 fourierdlem95.k . . . . . . . . 9 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
37 fourierdlem95.u . . . . . . . . 9 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
381nnred 12140 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
39 fourierdlem95.s . . . . . . . . 9 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
40 fourierdlem95.g . . . . . . . . 9 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
417, 9, 22, 34, 35, 36, 37, 38, 39, 40fourierdlem67 46219 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺:(-π[,]π)⟶ℝ)
4241ffvelcdmda 7017 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
435, 42syldan 591 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) ∈ ℝ)
44 fourierdlem95.admvol . . . . . . . 8 (𝜑𝐴 ∈ dom vol)
4544adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
4641feqmptd 6890 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
47 fourierdlem95.p . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
48 fourierdlem95.x . . . . . . . . . 10 (𝜑𝑋 ∈ ran 𝑉)
4948adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ran 𝑉)
5020adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
5132adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
52 fourierdlem95.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
5352adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
54 fourierdlem95.v . . . . . . . . . 10 (𝜑𝑉 ∈ (𝑃𝑀))
5554adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ (𝑃𝑀))
56 fourierdlem95.fcn . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
5756adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
58 fourierdlem95.r . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
5958adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
60 fourierdlem95.l . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
6160adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
62 fveq2 6822 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
6362oveq1d 7361 . . . . . . . . . 10 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
6463cbvmptv 5193 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
65 eqid 2731 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
66 fourierdlem95.i . . . . . . . . 9 𝐼 = (ℝ D 𝐹)
67 fourierdlem95.ifn . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
6867adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
69 fourierdlem95.b . . . . . . . . . 10 (𝜑𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
7069adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
71 fourierdlem95.c . . . . . . . . . 10 (𝜑𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
7271adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
7347, 7, 49, 50, 51, 35, 36, 37, 38, 39, 40, 53, 55, 57, 59, 61, 64, 65, 66, 68, 70, 72fourierdlem88 46240 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
7446, 73eqeltrrd 2832 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
754, 45, 42, 74iblss 25733 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (𝐺𝑠)) ∈ 𝐿1)
7643, 75itgrecl 25726 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(𝐺𝑠) d𝑠 ∈ ℝ)
77 pire 26393 . . . . . 6 π ∈ ℝ
7877a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
79 pipos 26395 . . . . . . 7 0 < π
8077, 79gt0ne0ii 11653 . . . . . 6 π ≠ 0
8180a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
8276, 78, 81redivcld 11949 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(𝐺𝑠) d𝑠 / π) ∈ ℝ)
83 fourierlemenplusacver2eqitgdirker.e . . . . 5 𝐸 = (𝑛 ∈ ℕ ↦ (∫𝐴(𝐺𝑠) d𝑠 / π))
8483fvmpt2 6940 . . . 4 ((𝑛 ∈ ℕ ∧ (∫𝐴(𝐺𝑠) d𝑠 / π) ∈ ℝ) → (𝐸𝑛) = (∫𝐴(𝐺𝑠) d𝑠 / π))
851, 82, 84syl2anc 584 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (∫𝐴(𝐺𝑠) d𝑠 / π))
86 fourierdlem95.o . . . . . . 7 (𝜑𝑂 ∈ ℝ)
8786recnd 11140 . . . . . 6 (𝜑𝑂 ∈ ℂ)
88 2cnd 12203 . . . . . 6 (𝜑 → 2 ∈ ℂ)
89 2ne0 12229 . . . . . . 7 2 ≠ 0
9089a1i 11 . . . . . 6 (𝜑 → 2 ≠ 0)
9187, 88, 90divrecd 11900 . . . . 5 (𝜑 → (𝑂 / 2) = (𝑂 · (1 / 2)))
9291adantr 480 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑂 / 2) = (𝑂 · (1 / 2)))
93 fourierdlem95.itgdirker . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫𝐴((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
9493eqcomd 2737 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (1 / 2) = ∫𝐴((𝐷𝑛)‘𝑠) d𝑠)
9594oveq2d 7362 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑂 · (1 / 2)) = (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠))
9692, 95eqtrd 2766 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑂 / 2) = (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠))
9785, 96oveq12d 7364 . 2 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑂 / 2)) = ((∫𝐴(𝐺𝑠) d𝑠 / π) + (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠)))
982sselda 3929 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
9998adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
100 fourierdlem95.d . . . . . . . 8 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
101 eqid 2731 . . . . . . . 8 ((-π[,]π) ∖ {0}) = ((-π[,]π) ∖ {0})
1026, 8, 21, 33, 100, 35, 36, 37, 39, 40, 101fourierdlem66 46218 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π[,]π) ∖ {0})) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
10399, 102syldan 591 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
104103itgeq2dv 25710 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(𝐺𝑠) d𝑠 = ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠)
105104oveq1d 7361 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(𝐺𝑠) d𝑠 / π) = (∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠 / π))
10678recnd 11140 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
1076adantr 480 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 𝐹:ℝ⟶ℝ)
1088adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
109 difss 4083 . . . . . . . . . . . . . 14 ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)
11077renegcli 11422 . . . . . . . . . . . . . . 15 -π ∈ ℝ
111 iccssre 13329 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
112110, 77, 111mp2an 692 . . . . . . . . . . . . . 14 (-π[,]π) ⊆ ℝ
113109, 112sstri 3939 . . . . . . . . . . . . 13 ((-π[,]π) ∖ {0}) ⊆ ℝ
114113, 98sselid 3927 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
115108, 114readdcld 11141 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
116107, 115ffvelcdmd 7018 . . . . . . . . . 10 ((𝜑𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
11721, 33ifcld 4519 . . . . . . . . . . 11 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
118117adantr 480 . . . . . . . . . 10 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
119116, 118resubcld 11545 . . . . . . . . 9 ((𝜑𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
120119adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
1211adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑛 ∈ ℕ)
122114adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ ℝ)
123100dirkerre 46141 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
124121, 122, 123syl2anc 584 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
125120, 124remulcld 11142 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
126103eqcomd 2737 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (𝐺𝑠))
127126oveq1d 7361 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) / π) = ((𝐺𝑠) / π))
128 picn 26394 . . . . . . . . . . . . 13 π ∈ ℂ
129128a1i 11 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → π ∈ ℂ)
130125recnd 11140 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) ∈ ℂ)
13180a1i 11 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → π ≠ 0)
132129, 130, 129, 131div23d 11934 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) / π) = ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
13343recnd 11140 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) ∈ ℂ)
134133, 129, 131divrec2d 11901 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐺𝑠) / π) = ((1 / π) · (𝐺𝑠)))
135127, 132, 1343eqtr3rd 2775 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((1 / π) · (𝐺𝑠)) = ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
136128, 80dividi 11854 . . . . . . . . . . . 12 (π / π) = 1
137136a1i 11 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (π / π) = 1)
138137oveq1d 7361 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (1 · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
139130mullidd 11130 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (1 · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)))
140135, 138, 1393eqtrrd 2771 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) = ((1 / π) · (𝐺𝑠)))
141140mpteq2dva 5182 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (𝑠𝐴 ↦ ((1 / π) · (𝐺𝑠))))
142106, 81reccld 11890 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / π) ∈ ℂ)
143142, 43, 75iblmulc2 25759 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ ((1 / π) · (𝐺𝑠))) ∈ 𝐿1)
144141, 143eqeltrd 2831 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
145106, 125, 144itgmulc2 25762 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠) = ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠)
146145eqcomd 2737 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠 = (π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠))
147146oveq1d 7361 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠 / π) = ((π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠) / π))
148125, 144itgcl 25712 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℂ)
149148, 106, 81divcan3d 11902 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠) / π) = ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠)
150105, 147, 1493eqtrd 2770 . . 3 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(𝐺𝑠) d𝑠 / π) = ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠)
15187adantr 480 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝑂 ∈ ℂ)
152112sseli 3925 . . . . . . 7 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
153152, 123sylan2 593 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
154153adantll 714 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
155110a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
156 ax-resscn 11063 . . . . . . . . . 10 ℝ ⊆ ℂ
157156a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → ℝ ⊆ ℂ)
158 ssid 3952 . . . . . . . . 9 ℂ ⊆ ℂ
159 cncfss 24819 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
160157, 158, 159sylancl 586 . . . . . . . 8 (𝑛 ∈ ℕ → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
161 eqid 2731 . . . . . . . . 9 (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠)) = (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠))
162100dirkerf 46143 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛):ℝ⟶ℝ)
163162feqmptd 6890 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐷𝑛) = (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠)))
164100dirkercncf 46153 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
165163, 164eqeltrrd 2832 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠)) ∈ (ℝ–cn→ℝ))
166112a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → (-π[,]π) ⊆ ℝ)
167 ssid 3952 . . . . . . . . . 10 ℝ ⊆ ℝ
168167a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → ℝ ⊆ ℝ)
169161, 165, 166, 168, 153cncfmptssg 45917 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℝ))
170160, 169sseldd 3930 . . . . . . 7 (𝑛 ∈ ℕ → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ))
171170adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ))
172 cniccibl 25769 . . . . . 6 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ)) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ 𝐿1)
173155, 78, 171, 172syl3anc 1373 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ 𝐿1)
1744, 45, 154, 173iblss 25733 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ ((𝐷𝑛)‘𝑠)) ∈ 𝐿1)
175151, 124, 174itgmulc2 25762 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠) = ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠)
176150, 175oveq12d 7364 . 2 ((𝜑𝑛 ∈ ℕ) → ((∫𝐴(𝐺𝑠) d𝑠 / π) + (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠)) = (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠))
17786ad2antrr 726 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑂 ∈ ℝ)
178177, 124remulcld 11142 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑂 · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
179151, 124, 174iblmulc2 25759 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (𝑂 · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
180125, 144, 178, 179itgadd 25753 . . 3 ((𝜑𝑛 ∈ ℕ) → ∫𝐴((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) d𝑠 = (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠))
181 fourierdlem95.ifeqo . . . . . . . . 9 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑂)
182181eqcomd 2737 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝑂 = if(0 < 𝑠, 𝑌, 𝑊))
183182adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑂 = if(0 < 𝑠, 𝑌, 𝑊))
184183oveq1d 7361 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑂 · ((𝐷𝑛)‘𝑠)) = (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠)))
185184oveq2d 7362 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))))
186116recnd 11140 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
187186adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
188118recnd 11140 . . . . . . . 8 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
189188adantlr 715 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
190124recnd 11140 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℂ)
191187, 189, 190subdird 11574 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) = (((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))))
192191oveq1d 7361 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) = ((((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))))
193187, 190mulcld 11132 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℂ)
194189, 190mulcld 11132 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠)) ∈ ℂ)
195193, 194npcand 11476 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
196185, 192, 1953eqtrd 2770 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
197196itgeq2dv 25710 . . 3 ((𝜑𝑛 ∈ ℕ) → ∫𝐴((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) d𝑠 = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
198180, 197eqtr3d 2768 . 2 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
19997, 176, 1983eqtrd 2770 1 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑂 / 2)) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  cdif 3894  wss 3897  ifcif 4472  {csn 4573   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  2c2 12180  (,)cioo 13245  [,]cicc 13248  ...cfz 13407  ..^cfzo 13554   mod cmo 13773  sincsin 15970  πcpi 15973  TopOpenctopn 17325  fldccnfld 21291  cnccncf 24796  volcvol 25391  𝐿1cibl 25545  citg 25546   lim climc 25790   D cdv 25791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-symdif 4200  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-t1 23229  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-ovol 25392  df-vol 25393  df-mbf 25547  df-itg1 25548  df-itg2 25549  df-ibl 25550  df-itg 25551  df-0p 25598  df-limc 25794  df-dv 25795
This theorem is referenced by:  fourierdlem103  46255  fourierdlem104  46256
  Copyright terms: Public domain W3C validator