| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bcthlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for bcth 25227. The limit point of the centers in the sequence is in the intersection of every ball in the sequence. (Contributed by Mario Carneiro, 7-Jan-2014.) |
| Ref | Expression |
|---|---|
| bcth.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| bcthlem.4 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
| bcthlem.5 | ⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) |
| bcthlem.6 | ⊢ (𝜑 → 𝑀:ℕ⟶(Clsd‘𝐽)) |
| bcthlem.7 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
| bcthlem.8 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| bcthlem.9 | ⊢ (𝜑 → 𝑔:ℕ⟶(𝑋 × ℝ+)) |
| bcthlem.10 | ⊢ (𝜑 → (𝑔‘1) = 〈𝐶, 𝑅〉) |
| bcthlem.11 | ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) |
| Ref | Expression |
|---|---|
| bcthlem3 | ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcthlem.11 | . . . . . . 7 ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) | |
| 2 | fvoveq1 7372 | . . . . . . . . 9 ⊢ (𝑘 = 𝐴 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝐴 + 1))) | |
| 3 | id 22 | . . . . . . . . . 10 ⊢ (𝑘 = 𝐴 → 𝑘 = 𝐴) | |
| 4 | fveq2 6822 | . . . . . . . . . 10 ⊢ (𝑘 = 𝐴 → (𝑔‘𝑘) = (𝑔‘𝐴)) | |
| 5 | 3, 4 | oveq12d 7367 | . . . . . . . . 9 ⊢ (𝑘 = 𝐴 → (𝑘𝐹(𝑔‘𝑘)) = (𝐴𝐹(𝑔‘𝐴))) |
| 6 | 2, 5 | eleq12d 2822 | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ↔ (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)))) |
| 7 | 6 | rspccva 3576 | . . . . . . 7 ⊢ ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ∧ 𝐴 ∈ ℕ) → (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴))) |
| 8 | 1, 7 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴))) |
| 9 | bcthlem.9 | . . . . . . . 8 ⊢ (𝜑 → 𝑔:ℕ⟶(𝑋 × ℝ+)) | |
| 10 | 9 | ffvelcdmda 7018 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝑔‘𝐴) ∈ (𝑋 × ℝ+)) |
| 11 | bcth.2 | . . . . . . . . 9 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 12 | bcthlem.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | |
| 13 | bcthlem.5 | . . . . . . . . 9 ⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) | |
| 14 | 11, 12, 13 | bcthlem1 25222 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ ℕ ∧ (𝑔‘𝐴) ∈ (𝑋 × ℝ+))) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴))))) |
| 15 | 14 | expr 456 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((𝑔‘𝐴) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴)))))) |
| 16 | 10, 15 | mpd 15 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴))))) |
| 17 | 8, 16 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴)))) |
| 18 | 17 | simp3d 1144 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴))) |
| 19 | 18 | difss2d 4090 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔‘𝐴))) |
| 20 | 19 | 3adant2 1131 | . 2 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔‘𝐴))) |
| 21 | peano2nn 12140 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
| 22 | cmetmet 25184 | . . . . 5 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
| 23 | metxmet 24220 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 24 | 12, 22, 23 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 25 | bcthlem.6 | . . . . 5 ⊢ (𝜑 → 𝑀:ℕ⟶(Clsd‘𝐽)) | |
| 26 | bcthlem.7 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
| 27 | bcthlem.8 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 28 | bcthlem.10 | . . . . 5 ⊢ (𝜑 → (𝑔‘1) = 〈𝐶, 𝑅〉) | |
| 29 | 11, 12, 13, 25, 26, 27, 9, 28, 1 | bcthlem2 25223 | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛))) |
| 30 | 24, 9, 29, 11 | caublcls 25207 | . . 3 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ (𝐴 + 1) ∈ ℕ) → 𝑥 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1))))) |
| 31 | 21, 30 | syl3an3 1165 | . 2 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → 𝑥 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1))))) |
| 32 | 20, 31 | sseldd 3936 | 1 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3900 ⊆ wss 3903 〈cop 4583 class class class wbr 5092 {copab 5154 × cxp 5617 ∘ ccom 5623 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 1st c1st 7922 2nd c2nd 7923 1c1 11010 + caddc 11012 < clt 11149 / cdiv 11777 ℕcn 12128 ℝ+crp 12893 ∞Metcxmet 21246 Metcmet 21247 ballcbl 21248 MetOpencmopn 21251 Clsdccld 22901 clsccl 22903 ⇝𝑡clm 23111 CMetccmet 25152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-lm 23114 df-cmet 25155 |
| This theorem is referenced by: bcthlem4 25225 |
| Copyright terms: Public domain | W3C validator |