| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bcthlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for bcth 25363. The limit point of the centers in the sequence is in the intersection of every ball in the sequence. (Contributed by Mario Carneiro, 7-Jan-2014.) |
| Ref | Expression |
|---|---|
| bcth.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| bcthlem.4 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
| bcthlem.5 | ⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) |
| bcthlem.6 | ⊢ (𝜑 → 𝑀:ℕ⟶(Clsd‘𝐽)) |
| bcthlem.7 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
| bcthlem.8 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| bcthlem.9 | ⊢ (𝜑 → 𝑔:ℕ⟶(𝑋 × ℝ+)) |
| bcthlem.10 | ⊢ (𝜑 → (𝑔‘1) = 〈𝐶, 𝑅〉) |
| bcthlem.11 | ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) |
| Ref | Expression |
|---|---|
| bcthlem3 | ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcthlem.11 | . . . . . . 7 ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) | |
| 2 | fvoveq1 7454 | . . . . . . . . 9 ⊢ (𝑘 = 𝐴 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝐴 + 1))) | |
| 3 | id 22 | . . . . . . . . . 10 ⊢ (𝑘 = 𝐴 → 𝑘 = 𝐴) | |
| 4 | fveq2 6906 | . . . . . . . . . 10 ⊢ (𝑘 = 𝐴 → (𝑔‘𝑘) = (𝑔‘𝐴)) | |
| 5 | 3, 4 | oveq12d 7449 | . . . . . . . . 9 ⊢ (𝑘 = 𝐴 → (𝑘𝐹(𝑔‘𝑘)) = (𝐴𝐹(𝑔‘𝐴))) |
| 6 | 2, 5 | eleq12d 2835 | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ↔ (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)))) |
| 7 | 6 | rspccva 3621 | . . . . . . 7 ⊢ ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ∧ 𝐴 ∈ ℕ) → (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴))) |
| 8 | 1, 7 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴))) |
| 9 | bcthlem.9 | . . . . . . . 8 ⊢ (𝜑 → 𝑔:ℕ⟶(𝑋 × ℝ+)) | |
| 10 | 9 | ffvelcdmda 7104 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝑔‘𝐴) ∈ (𝑋 × ℝ+)) |
| 11 | bcth.2 | . . . . . . . . 9 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 12 | bcthlem.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | |
| 13 | bcthlem.5 | . . . . . . . . 9 ⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) | |
| 14 | 11, 12, 13 | bcthlem1 25358 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ ℕ ∧ (𝑔‘𝐴) ∈ (𝑋 × ℝ+))) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴))))) |
| 15 | 14 | expr 456 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((𝑔‘𝐴) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴)))))) |
| 16 | 10, 15 | mpd 15 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴))))) |
| 17 | 8, 16 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴)))) |
| 18 | 17 | simp3d 1145 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴))) |
| 19 | 18 | difss2d 4139 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔‘𝐴))) |
| 20 | 19 | 3adant2 1132 | . 2 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔‘𝐴))) |
| 21 | peano2nn 12278 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
| 22 | cmetmet 25320 | . . . . 5 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
| 23 | metxmet 24344 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 24 | 12, 22, 23 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 25 | bcthlem.6 | . . . . 5 ⊢ (𝜑 → 𝑀:ℕ⟶(Clsd‘𝐽)) | |
| 26 | bcthlem.7 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
| 27 | bcthlem.8 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 28 | bcthlem.10 | . . . . 5 ⊢ (𝜑 → (𝑔‘1) = 〈𝐶, 𝑅〉) | |
| 29 | 11, 12, 13, 25, 26, 27, 9, 28, 1 | bcthlem2 25359 | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛))) |
| 30 | 24, 9, 29, 11 | caublcls 25343 | . . 3 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ (𝐴 + 1) ∈ ℕ) → 𝑥 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1))))) |
| 31 | 21, 30 | syl3an3 1166 | . 2 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → 𝑥 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1))))) |
| 32 | 20, 31 | sseldd 3984 | 1 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∖ cdif 3948 ⊆ wss 3951 〈cop 4632 class class class wbr 5143 {copab 5205 × cxp 5683 ∘ ccom 5689 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 1st c1st 8012 2nd c2nd 8013 1c1 11156 + caddc 11158 < clt 11295 / cdiv 11920 ℕcn 12266 ℝ+crp 13034 ∞Metcxmet 21349 Metcmet 21350 ballcbl 21351 MetOpencmopn 21354 Clsdccld 23024 clsccl 23026 ⇝𝑡clm 23234 CMetccmet 25288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-topgen 17488 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-top 22900 df-topon 22917 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-lm 23237 df-cmet 25291 |
| This theorem is referenced by: bcthlem4 25361 |
| Copyright terms: Public domain | W3C validator |