| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bcthlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for bcth 25281. The limit point of the centers in the sequence is in the intersection of every ball in the sequence. (Contributed by Mario Carneiro, 7-Jan-2014.) |
| Ref | Expression |
|---|---|
| bcth.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| bcthlem.4 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
| bcthlem.5 | ⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) |
| bcthlem.6 | ⊢ (𝜑 → 𝑀:ℕ⟶(Clsd‘𝐽)) |
| bcthlem.7 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
| bcthlem.8 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| bcthlem.9 | ⊢ (𝜑 → 𝑔:ℕ⟶(𝑋 × ℝ+)) |
| bcthlem.10 | ⊢ (𝜑 → (𝑔‘1) = 〈𝐶, 𝑅〉) |
| bcthlem.11 | ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) |
| Ref | Expression |
|---|---|
| bcthlem3 | ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcthlem.11 | . . . . . . 7 ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) | |
| 2 | fvoveq1 7428 | . . . . . . . . 9 ⊢ (𝑘 = 𝐴 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝐴 + 1))) | |
| 3 | id 22 | . . . . . . . . . 10 ⊢ (𝑘 = 𝐴 → 𝑘 = 𝐴) | |
| 4 | fveq2 6876 | . . . . . . . . . 10 ⊢ (𝑘 = 𝐴 → (𝑔‘𝑘) = (𝑔‘𝐴)) | |
| 5 | 3, 4 | oveq12d 7423 | . . . . . . . . 9 ⊢ (𝑘 = 𝐴 → (𝑘𝐹(𝑔‘𝑘)) = (𝐴𝐹(𝑔‘𝐴))) |
| 6 | 2, 5 | eleq12d 2828 | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ↔ (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)))) |
| 7 | 6 | rspccva 3600 | . . . . . . 7 ⊢ ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ∧ 𝐴 ∈ ℕ) → (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴))) |
| 8 | 1, 7 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴))) |
| 9 | bcthlem.9 | . . . . . . . 8 ⊢ (𝜑 → 𝑔:ℕ⟶(𝑋 × ℝ+)) | |
| 10 | 9 | ffvelcdmda 7074 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝑔‘𝐴) ∈ (𝑋 × ℝ+)) |
| 11 | bcth.2 | . . . . . . . . 9 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 12 | bcthlem.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | |
| 13 | bcthlem.5 | . . . . . . . . 9 ⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) | |
| 14 | 11, 12, 13 | bcthlem1 25276 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ ℕ ∧ (𝑔‘𝐴) ∈ (𝑋 × ℝ+))) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴))))) |
| 15 | 14 | expr 456 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((𝑔‘𝐴) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴)))))) |
| 16 | 10, 15 | mpd 15 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴))))) |
| 17 | 8, 16 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴)))) |
| 18 | 17 | simp3d 1144 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴))) |
| 19 | 18 | difss2d 4114 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔‘𝐴))) |
| 20 | 19 | 3adant2 1131 | . 2 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔‘𝐴))) |
| 21 | peano2nn 12252 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
| 22 | cmetmet 25238 | . . . . 5 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
| 23 | metxmet 24273 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 24 | 12, 22, 23 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 25 | bcthlem.6 | . . . . 5 ⊢ (𝜑 → 𝑀:ℕ⟶(Clsd‘𝐽)) | |
| 26 | bcthlem.7 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
| 27 | bcthlem.8 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 28 | bcthlem.10 | . . . . 5 ⊢ (𝜑 → (𝑔‘1) = 〈𝐶, 𝑅〉) | |
| 29 | 11, 12, 13, 25, 26, 27, 9, 28, 1 | bcthlem2 25277 | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛))) |
| 30 | 24, 9, 29, 11 | caublcls 25261 | . . 3 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ (𝐴 + 1) ∈ ℕ) → 𝑥 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1))))) |
| 31 | 21, 30 | syl3an3 1165 | . 2 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → 𝑥 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1))))) |
| 32 | 20, 31 | sseldd 3959 | 1 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∖ cdif 3923 ⊆ wss 3926 〈cop 4607 class class class wbr 5119 {copab 5181 × cxp 5652 ∘ ccom 5658 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 1st c1st 7986 2nd c2nd 7987 1c1 11130 + caddc 11132 < clt 11269 / cdiv 11894 ℕcn 12240 ℝ+crp 13008 ∞Metcxmet 21300 Metcmet 21301 ballcbl 21302 MetOpencmopn 21305 Clsdccld 22954 clsccl 22956 ⇝𝑡clm 23164 CMetccmet 25206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-lm 23167 df-cmet 25209 |
| This theorem is referenced by: bcthlem4 25279 |
| Copyright terms: Public domain | W3C validator |