Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bcthlem3 | Structured version Visualization version GIF version |
Description: Lemma for bcth 24493. The limit point of the centers in the sequence is in the intersection of every ball in the sequence. (Contributed by Mario Carneiro, 7-Jan-2014.) |
Ref | Expression |
---|---|
bcth.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
bcthlem.4 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
bcthlem.5 | ⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) |
bcthlem.6 | ⊢ (𝜑 → 𝑀:ℕ⟶(Clsd‘𝐽)) |
bcthlem.7 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
bcthlem.8 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
bcthlem.9 | ⊢ (𝜑 → 𝑔:ℕ⟶(𝑋 × ℝ+)) |
bcthlem.10 | ⊢ (𝜑 → (𝑔‘1) = 〈𝐶, 𝑅〉) |
bcthlem.11 | ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) |
Ref | Expression |
---|---|
bcthlem3 | ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bcthlem.11 | . . . . . . 7 ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) | |
2 | fvoveq1 7298 | . . . . . . . . 9 ⊢ (𝑘 = 𝐴 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝐴 + 1))) | |
3 | id 22 | . . . . . . . . . 10 ⊢ (𝑘 = 𝐴 → 𝑘 = 𝐴) | |
4 | fveq2 6774 | . . . . . . . . . 10 ⊢ (𝑘 = 𝐴 → (𝑔‘𝑘) = (𝑔‘𝐴)) | |
5 | 3, 4 | oveq12d 7293 | . . . . . . . . 9 ⊢ (𝑘 = 𝐴 → (𝑘𝐹(𝑔‘𝑘)) = (𝐴𝐹(𝑔‘𝐴))) |
6 | 2, 5 | eleq12d 2833 | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ↔ (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)))) |
7 | 6 | rspccva 3560 | . . . . . . 7 ⊢ ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ∧ 𝐴 ∈ ℕ) → (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴))) |
8 | 1, 7 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴))) |
9 | bcthlem.9 | . . . . . . . 8 ⊢ (𝜑 → 𝑔:ℕ⟶(𝑋 × ℝ+)) | |
10 | 9 | ffvelrnda 6961 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝑔‘𝐴) ∈ (𝑋 × ℝ+)) |
11 | bcth.2 | . . . . . . . . 9 ⊢ 𝐽 = (MetOpen‘𝐷) | |
12 | bcthlem.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | |
13 | bcthlem.5 | . . . . . . . . 9 ⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) | |
14 | 11, 12, 13 | bcthlem1 24488 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ ℕ ∧ (𝑔‘𝐴) ∈ (𝑋 × ℝ+))) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴))))) |
15 | 14 | expr 457 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((𝑔‘𝐴) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴)))))) |
16 | 10, 15 | mpd 15 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔‘𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴))))) |
17 | 8, 16 | mpbid 231 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴)))) |
18 | 17 | simp3d 1143 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝐴)) ∖ (𝑀‘𝐴))) |
19 | 18 | difss2d 4069 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔‘𝐴))) |
20 | 19 | 3adant2 1130 | . 2 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔‘𝐴))) |
21 | peano2nn 11985 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
22 | cmetmet 24450 | . . . . 5 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | |
23 | metxmet 23487 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
24 | 12, 22, 23 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
25 | bcthlem.6 | . . . . 5 ⊢ (𝜑 → 𝑀:ℕ⟶(Clsd‘𝐽)) | |
26 | bcthlem.7 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
27 | bcthlem.8 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
28 | bcthlem.10 | . . . . 5 ⊢ (𝜑 → (𝑔‘1) = 〈𝐶, 𝑅〉) | |
29 | 11, 12, 13, 25, 26, 27, 9, 28, 1 | bcthlem2 24489 | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛))) |
30 | 24, 9, 29, 11 | caublcls 24473 | . . 3 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ (𝐴 + 1) ∈ ℕ) → 𝑥 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1))))) |
31 | 21, 30 | syl3an3 1164 | . 2 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → 𝑥 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1))))) |
32 | 20, 31 | sseldd 3922 | 1 ⊢ ((𝜑 ∧ (1st ∘ 𝑔)(⇝𝑡‘𝐽)𝑥 ∧ 𝐴 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∖ cdif 3884 ⊆ wss 3887 〈cop 4567 class class class wbr 5074 {copab 5136 × cxp 5587 ∘ ccom 5593 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 1st c1st 7829 2nd c2nd 7830 1c1 10872 + caddc 10874 < clt 11009 / cdiv 11632 ℕcn 11973 ℝ+crp 12730 ∞Metcxmet 20582 Metcmet 20583 ballcbl 20584 MetOpencmopn 20587 Clsdccld 22167 clsccl 22169 ⇝𝑡clm 22377 CMetccmet 24418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-lm 22380 df-cmet 24421 |
This theorem is referenced by: bcthlem4 24491 |
Copyright terms: Public domain | W3C validator |