MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem3 Structured version   Visualization version   GIF version

Theorem bcthlem3 25374
Description: Lemma for bcth 25377. The limit point of the centers in the sequence is in the intersection of every ball in the sequence. (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
bcthlem.4 (𝜑𝐷 ∈ (CMet‘𝑋))
bcthlem.5 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
bcthlem.6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
bcthlem.7 (𝜑𝑅 ∈ ℝ+)
bcthlem.8 (𝜑𝐶𝑋)
bcthlem.9 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
bcthlem.10 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
bcthlem.11 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
Assertion
Ref Expression
bcthlem3 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝐴 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔𝐴)))
Distinct variable groups:   𝑘,𝑟,𝑥,𝑧,𝐴   𝐶,𝑟,𝑥   𝑔,𝑘,𝑟,𝑥,𝑧,𝐷   𝑔,𝐹,𝑘,𝑟,𝑥,𝑧   𝑔,𝐽,𝑘,𝑟,𝑥,𝑧   𝑔,𝑀,𝑘,𝑟,𝑥,𝑧   𝜑,𝑘,𝑟,𝑥,𝑧   𝑥,𝑅   𝑔,𝑋,𝑘,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑔)   𝐶(𝑧,𝑔,𝑘)   𝑅(𝑧,𝑔,𝑘,𝑟)

Proof of Theorem bcthlem3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 bcthlem.11 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
2 fvoveq1 7454 . . . . . . . . 9 (𝑘 = 𝐴 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝐴 + 1)))
3 id 22 . . . . . . . . . 10 (𝑘 = 𝐴𝑘 = 𝐴)
4 fveq2 6907 . . . . . . . . . 10 (𝑘 = 𝐴 → (𝑔𝑘) = (𝑔𝐴))
53, 4oveq12d 7449 . . . . . . . . 9 (𝑘 = 𝐴 → (𝑘𝐹(𝑔𝑘)) = (𝐴𝐹(𝑔𝐴)))
62, 5eleq12d 2833 . . . . . . . 8 (𝑘 = 𝐴 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴))))
76rspccva 3621 . . . . . . 7 ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ∧ 𝐴 ∈ ℕ) → (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴)))
81, 7sylan 580 . . . . . 6 ((𝜑𝐴 ∈ ℕ) → (𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴)))
9 bcthlem.9 . . . . . . . 8 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
109ffvelcdmda 7104 . . . . . . 7 ((𝜑𝐴 ∈ ℕ) → (𝑔𝐴) ∈ (𝑋 × ℝ+))
11 bcth.2 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
12 bcthlem.4 . . . . . . . . 9 (𝜑𝐷 ∈ (CMet‘𝑋))
13 bcthlem.5 . . . . . . . . 9 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
1411, 12, 13bcthlem1 25372 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∈ ℕ ∧ (𝑔𝐴) ∈ (𝑋 × ℝ+))) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝐴)) ∖ (𝑀𝐴)))))
1514expr 456 . . . . . . 7 ((𝜑𝐴 ∈ ℕ) → ((𝑔𝐴) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝐴)) ∖ (𝑀𝐴))))))
1610, 15mpd 15 . . . . . 6 ((𝜑𝐴 ∈ ℕ) → ((𝑔‘(𝐴 + 1)) ∈ (𝐴𝐹(𝑔𝐴)) ↔ ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝐴)) ∖ (𝑀𝐴)))))
178, 16mpbid 232 . . . . 5 ((𝜑𝐴 ∈ ℕ) → ((𝑔‘(𝐴 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝐴 + 1))) < (1 / 𝐴) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝐴)) ∖ (𝑀𝐴))))
1817simp3d 1143 . . . 4 ((𝜑𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝐴)) ∖ (𝑀𝐴)))
1918difss2d 4149 . . 3 ((𝜑𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔𝐴)))
20193adant2 1130 . 2 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝐴 ∈ ℕ) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔𝐴)))
21 peano2nn 12276 . . 3 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
22 cmetmet 25334 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
23 metxmet 24360 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2412, 22, 233syl 18 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
25 bcthlem.6 . . . . 5 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
26 bcthlem.7 . . . . 5 (𝜑𝑅 ∈ ℝ+)
27 bcthlem.8 . . . . 5 (𝜑𝐶𝑋)
28 bcthlem.10 . . . . 5 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
2911, 12, 13, 25, 26, 27, 9, 28, 1bcthlem2 25373 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
3024, 9, 29, 11caublcls 25357 . . 3 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥 ∧ (𝐴 + 1) ∈ ℕ) → 𝑥 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))))
3121, 30syl3an3 1164 . 2 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝐴 ∈ ℕ) → 𝑥 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝐴 + 1)))))
3220, 31sseldd 3996 1 ((𝜑 ∧ (1st𝑔)(⇝𝑡𝐽)𝑥𝐴 ∈ ℕ) → 𝑥 ∈ ((ball‘𝐷)‘(𝑔𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  cdif 3960  wss 3963  cop 4637   class class class wbr 5148  {copab 5210   × cxp 5687  ccom 5693  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  1st c1st 8011  2nd c2nd 8012  1c1 11154   + caddc 11156   < clt 11293   / cdiv 11918  cn 12264  +crp 13032  ∞Metcxmet 21367  Metcmet 21368  ballcbl 21369  MetOpencmopn 21372  Clsdccld 23040  clsccl 23042  𝑡clm 23250  CMetccmet 25302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-lm 23253  df-cmet 25305
This theorem is referenced by:  bcthlem4  25375
  Copyright terms: Public domain W3C validator