Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oacomf1olem | Structured version Visualization version GIF version |
Description: Lemma for oacomf1o 8396. (Contributed by Mario Carneiro, 30-May-2015.) |
Ref | Expression |
---|---|
oacomf1olem.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) |
Ref | Expression |
---|---|
oacomf1olem | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴–1-1-onto→ran 𝐹 ∧ (ran 𝐹 ∩ 𝐵) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oaf1o 8394 | . . . . . . 7 ⊢ (𝐵 ∈ On → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵)) | |
2 | 1 | adantl 482 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵)) |
3 | f1of1 6715 | . . . . . 6 ⊢ ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵)) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵)) |
5 | onss 7634 | . . . . . 6 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ On) |
7 | f1ssres 6678 | . . . . 5 ⊢ (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵) ∧ 𝐴 ⊆ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵)) | |
8 | 4, 6, 7 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵)) |
9 | 6 | resmptd 5948 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥))) |
10 | oacomf1olem.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) | |
11 | 9, 10 | eqtr4di 2796 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹) |
12 | f1eq1 6665 | . . . . 5 ⊢ (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹 → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴–1-1→(On ∖ 𝐵))) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴–1-1→(On ∖ 𝐵))) |
14 | 8, 13 | mpbid 231 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴–1-1→(On ∖ 𝐵)) |
15 | f1f1orn 6727 | . . 3 ⊢ (𝐹:𝐴–1-1→(On ∖ 𝐵) → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
16 | 14, 15 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴–1-1-onto→ran 𝐹) |
17 | f1f 6670 | . . . 4 ⊢ (𝐹:𝐴–1-1→(On ∖ 𝐵) → 𝐹:𝐴⟶(On ∖ 𝐵)) | |
18 | frn 6607 | . . . 4 ⊢ (𝐹:𝐴⟶(On ∖ 𝐵) → ran 𝐹 ⊆ (On ∖ 𝐵)) | |
19 | 14, 17, 18 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ (On ∖ 𝐵)) |
20 | 19 | difss2d 4069 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ On) |
21 | reldisj 4385 | . . . 4 ⊢ (ran 𝐹 ⊆ On → ((ran 𝐹 ∩ 𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵))) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ran 𝐹 ∩ 𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵))) |
23 | 19, 22 | mpbird 256 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran 𝐹 ∩ 𝐵) = ∅) |
24 | 16, 23 | jca 512 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴–1-1-onto→ran 𝐹 ∧ (ran 𝐹 ∩ 𝐵) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ↦ cmpt 5157 ran crn 5590 ↾ cres 5591 Oncon0 6266 ⟶wf 6429 –1-1→wf1 6430 –1-1-onto→wf1o 6432 (class class class)co 7275 +o coa 8294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-oadd 8301 |
This theorem is referenced by: oacomf1o 8396 onadju 9949 |
Copyright terms: Public domain | W3C validator |