MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacomf1olem Structured version   Visualization version   GIF version

Theorem oacomf1olem 8505
Description: Lemma for oacomf1o 8506. (Contributed by Mario Carneiro, 30-May-2015.)
Hypothesis
Ref Expression
oacomf1olem.1 𝐹 = (𝑥𝐴 ↦ (𝐵 +o 𝑥))
Assertion
Ref Expression
oacomf1olem ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴1-1-onto→ran 𝐹 ∧ (ran 𝐹𝐵) = ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem oacomf1olem
StepHypRef Expression
1 oaf1o 8504 . . . . . . 7 (𝐵 ∈ On → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵))
21adantl 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵))
3 f1of1 6781 . . . . . 6 ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵))
42, 3syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵))
5 onss 7741 . . . . . 6 (𝐴 ∈ On → 𝐴 ⊆ On)
65adantr 480 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ On)
7 f1ssres 6745 . . . . 5 (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵) ∧ 𝐴 ⊆ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴1-1→(On ∖ 𝐵))
84, 6, 7syl2anc 584 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴1-1→(On ∖ 𝐵))
96resmptd 6000 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = (𝑥𝐴 ↦ (𝐵 +o 𝑥)))
10 oacomf1olem.1 . . . . . 6 𝐹 = (𝑥𝐴 ↦ (𝐵 +o 𝑥))
119, 10eqtr4di 2782 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹)
12 f1eq1 6733 . . . . 5 (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹 → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴1-1→(On ∖ 𝐵)))
1311, 12syl 17 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴1-1→(On ∖ 𝐵)))
148, 13mpbid 232 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴1-1→(On ∖ 𝐵))
15 f1f1orn 6793 . . 3 (𝐹:𝐴1-1→(On ∖ 𝐵) → 𝐹:𝐴1-1-onto→ran 𝐹)
1614, 15syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴1-1-onto→ran 𝐹)
17 f1f 6738 . . . 4 (𝐹:𝐴1-1→(On ∖ 𝐵) → 𝐹:𝐴⟶(On ∖ 𝐵))
18 frn 6677 . . . 4 (𝐹:𝐴⟶(On ∖ 𝐵) → ran 𝐹 ⊆ (On ∖ 𝐵))
1914, 17, 183syl 18 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ (On ∖ 𝐵))
2019difss2d 4098 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ On)
21 reldisj 4412 . . . 4 (ran 𝐹 ⊆ On → ((ran 𝐹𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵)))
2220, 21syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ran 𝐹𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵)))
2319, 22mpbird 257 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran 𝐹𝐵) = ∅)
2416, 23jca 511 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴1-1-onto→ran 𝐹 ∧ (ran 𝐹𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3908  cin 3910  wss 3911  c0 4292  cmpt 5183  ran crn 5632  cres 5633  Oncon0 6320  wf 6495  1-1wf1 6496  1-1-ontowf1o 6498  (class class class)co 7369   +o coa 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-oadd 8415
This theorem is referenced by:  oacomf1o  8506  onadju  10123
  Copyright terms: Public domain W3C validator