Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oacomf1olem | Structured version Visualization version GIF version |
Description: Lemma for oacomf1o 8358. (Contributed by Mario Carneiro, 30-May-2015.) |
Ref | Expression |
---|---|
oacomf1olem.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) |
Ref | Expression |
---|---|
oacomf1olem | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴–1-1-onto→ran 𝐹 ∧ (ran 𝐹 ∩ 𝐵) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oaf1o 8356 | . . . . . . 7 ⊢ (𝐵 ∈ On → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵)) | |
2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵)) |
3 | f1of1 6699 | . . . . . 6 ⊢ ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵)) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵)) |
5 | onss 7611 | . . . . . 6 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ On) |
7 | f1ssres 6662 | . . . . 5 ⊢ (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵) ∧ 𝐴 ⊆ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵)) | |
8 | 4, 6, 7 | syl2anc 583 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵)) |
9 | 6 | resmptd 5937 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥))) |
10 | oacomf1olem.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) | |
11 | 9, 10 | eqtr4di 2797 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹) |
12 | f1eq1 6649 | . . . . 5 ⊢ (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹 → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴–1-1→(On ∖ 𝐵))) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴–1-1→(On ∖ 𝐵))) |
14 | 8, 13 | mpbid 231 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴–1-1→(On ∖ 𝐵)) |
15 | f1f1orn 6711 | . . 3 ⊢ (𝐹:𝐴–1-1→(On ∖ 𝐵) → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
16 | 14, 15 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴–1-1-onto→ran 𝐹) |
17 | f1f 6654 | . . . 4 ⊢ (𝐹:𝐴–1-1→(On ∖ 𝐵) → 𝐹:𝐴⟶(On ∖ 𝐵)) | |
18 | frn 6591 | . . . 4 ⊢ (𝐹:𝐴⟶(On ∖ 𝐵) → ran 𝐹 ⊆ (On ∖ 𝐵)) | |
19 | 14, 17, 18 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ (On ∖ 𝐵)) |
20 | 19 | difss2d 4065 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ On) |
21 | reldisj 4382 | . . . 4 ⊢ (ran 𝐹 ⊆ On → ((ran 𝐹 ∩ 𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵))) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ran 𝐹 ∩ 𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵))) |
23 | 19, 22 | mpbird 256 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran 𝐹 ∩ 𝐵) = ∅) |
24 | 16, 23 | jca 511 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴–1-1-onto→ran 𝐹 ∧ (ran 𝐹 ∩ 𝐵) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ↦ cmpt 5153 ran crn 5581 ↾ cres 5582 Oncon0 6251 ⟶wf 6414 –1-1→wf1 6415 –1-1-onto→wf1o 6417 (class class class)co 7255 +o coa 8264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-oadd 8271 |
This theorem is referenced by: oacomf1o 8358 onadju 9880 |
Copyright terms: Public domain | W3C validator |