MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacomf1olem Structured version   Visualization version   GIF version

Theorem oacomf1olem 8565
Description: Lemma for oacomf1o 8566. (Contributed by Mario Carneiro, 30-May-2015.)
Hypothesis
Ref Expression
oacomf1olem.1 𝐹 = (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯))
Assertion
Ref Expression
oacomf1olem ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐹:𝐴–1-1-ontoβ†’ran 𝐹 ∧ (ran 𝐹 ∩ 𝐡) = βˆ…))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡
Allowed substitution hint:   𝐹(π‘₯)

Proof of Theorem oacomf1olem
StepHypRef Expression
1 oaf1o 8564 . . . . . . 7 (𝐡 ∈ On β†’ (π‘₯ ∈ On ↦ (𝐡 +o π‘₯)):On–1-1-ontoβ†’(On βˆ– 𝐡))
21adantl 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (π‘₯ ∈ On ↦ (𝐡 +o π‘₯)):On–1-1-ontoβ†’(On βˆ– 𝐡))
3 f1of1 6826 . . . . . 6 ((π‘₯ ∈ On ↦ (𝐡 +o π‘₯)):On–1-1-ontoβ†’(On βˆ– 𝐡) β†’ (π‘₯ ∈ On ↦ (𝐡 +o π‘₯)):On–1-1β†’(On βˆ– 𝐡))
42, 3syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (π‘₯ ∈ On ↦ (𝐡 +o π‘₯)):On–1-1β†’(On βˆ– 𝐡))
5 onss 7769 . . . . . 6 (𝐴 ∈ On β†’ 𝐴 βŠ† On)
65adantr 480 . . . . 5 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ 𝐴 βŠ† On)
7 f1ssres 6789 . . . . 5 (((π‘₯ ∈ On ↦ (𝐡 +o π‘₯)):On–1-1β†’(On βˆ– 𝐡) ∧ 𝐴 βŠ† On) β†’ ((π‘₯ ∈ On ↦ (𝐡 +o π‘₯)) β†Ύ 𝐴):𝐴–1-1β†’(On βˆ– 𝐡))
84, 6, 7syl2anc 583 . . . 4 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ ((π‘₯ ∈ On ↦ (𝐡 +o π‘₯)) β†Ύ 𝐴):𝐴–1-1β†’(On βˆ– 𝐡))
96resmptd 6034 . . . . . 6 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ ((π‘₯ ∈ On ↦ (𝐡 +o π‘₯)) β†Ύ 𝐴) = (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)))
10 oacomf1olem.1 . . . . . 6 𝐹 = (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯))
119, 10eqtr4di 2784 . . . . 5 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ ((π‘₯ ∈ On ↦ (𝐡 +o π‘₯)) β†Ύ 𝐴) = 𝐹)
12 f1eq1 6776 . . . . 5 (((π‘₯ ∈ On ↦ (𝐡 +o π‘₯)) β†Ύ 𝐴) = 𝐹 β†’ (((π‘₯ ∈ On ↦ (𝐡 +o π‘₯)) β†Ύ 𝐴):𝐴–1-1β†’(On βˆ– 𝐡) ↔ 𝐹:𝐴–1-1β†’(On βˆ– 𝐡)))
1311, 12syl 17 . . . 4 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (((π‘₯ ∈ On ↦ (𝐡 +o π‘₯)) β†Ύ 𝐴):𝐴–1-1β†’(On βˆ– 𝐡) ↔ 𝐹:𝐴–1-1β†’(On βˆ– 𝐡)))
148, 13mpbid 231 . . 3 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ 𝐹:𝐴–1-1β†’(On βˆ– 𝐡))
15 f1f1orn 6838 . . 3 (𝐹:𝐴–1-1β†’(On βˆ– 𝐡) β†’ 𝐹:𝐴–1-1-ontoβ†’ran 𝐹)
1614, 15syl 17 . 2 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ 𝐹:𝐴–1-1-ontoβ†’ran 𝐹)
17 f1f 6781 . . . 4 (𝐹:𝐴–1-1β†’(On βˆ– 𝐡) β†’ 𝐹:𝐴⟢(On βˆ– 𝐡))
18 frn 6718 . . . 4 (𝐹:𝐴⟢(On βˆ– 𝐡) β†’ ran 𝐹 βŠ† (On βˆ– 𝐡))
1914, 17, 183syl 18 . . 3 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ ran 𝐹 βŠ† (On βˆ– 𝐡))
2019difss2d 4129 . . . 4 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ ran 𝐹 βŠ† On)
21 reldisj 4446 . . . 4 (ran 𝐹 βŠ† On β†’ ((ran 𝐹 ∩ 𝐡) = βˆ… ↔ ran 𝐹 βŠ† (On βˆ– 𝐡)))
2220, 21syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ ((ran 𝐹 ∩ 𝐡) = βˆ… ↔ ran 𝐹 βŠ† (On βˆ– 𝐡)))
2319, 22mpbird 257 . 2 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (ran 𝐹 ∩ 𝐡) = βˆ…)
2416, 23jca 511 1 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐹:𝐴–1-1-ontoβ†’ran 𝐹 ∧ (ran 𝐹 ∩ 𝐡) = βˆ…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098   βˆ– cdif 3940   ∩ cin 3942   βŠ† wss 3943  βˆ…c0 4317   ↦ cmpt 5224  ran crn 5670   β†Ύ cres 5671  Oncon0 6358  βŸΆwf 6533  β€“1-1β†’wf1 6534  β€“1-1-ontoβ†’wf1o 6536  (class class class)co 7405   +o coa 8464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-oadd 8471
This theorem is referenced by:  oacomf1o  8566  onadju  10190
  Copyright terms: Public domain W3C validator