| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oacomf1olem | Structured version Visualization version GIF version | ||
| Description: Lemma for oacomf1o 8586. (Contributed by Mario Carneiro, 30-May-2015.) |
| Ref | Expression |
|---|---|
| oacomf1olem.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) |
| Ref | Expression |
|---|---|
| oacomf1olem | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴–1-1-onto→ran 𝐹 ∧ (ran 𝐹 ∩ 𝐵) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oaf1o 8584 | . . . . . . 7 ⊢ (𝐵 ∈ On → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵)) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵)) |
| 3 | f1of1 6828 | . . . . . 6 ⊢ ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵)) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵)) |
| 5 | onss 7788 | . . . . . 6 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ On) |
| 7 | f1ssres 6792 | . . . . 5 ⊢ (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵) ∧ 𝐴 ⊆ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵)) | |
| 8 | 4, 6, 7 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵)) |
| 9 | 6 | resmptd 6040 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥))) |
| 10 | oacomf1olem.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) | |
| 11 | 9, 10 | eqtr4di 2787 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹) |
| 12 | f1eq1 6780 | . . . . 5 ⊢ (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹 → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴–1-1→(On ∖ 𝐵))) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴–1-1→(On ∖ 𝐵))) |
| 14 | 8, 13 | mpbid 232 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴–1-1→(On ∖ 𝐵)) |
| 15 | f1f1orn 6840 | . . 3 ⊢ (𝐹:𝐴–1-1→(On ∖ 𝐵) → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴–1-1-onto→ran 𝐹) |
| 17 | f1f 6785 | . . . 4 ⊢ (𝐹:𝐴–1-1→(On ∖ 𝐵) → 𝐹:𝐴⟶(On ∖ 𝐵)) | |
| 18 | frn 6724 | . . . 4 ⊢ (𝐹:𝐴⟶(On ∖ 𝐵) → ran 𝐹 ⊆ (On ∖ 𝐵)) | |
| 19 | 14, 17, 18 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ (On ∖ 𝐵)) |
| 20 | 19 | difss2d 4121 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ On) |
| 21 | reldisj 4435 | . . . 4 ⊢ (ran 𝐹 ⊆ On → ((ran 𝐹 ∩ 𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵))) | |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ran 𝐹 ∩ 𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵))) |
| 23 | 19, 22 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran 𝐹 ∩ 𝐵) = ∅) |
| 24 | 16, 23 | jca 511 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴–1-1-onto→ran 𝐹 ∧ (ran 𝐹 ∩ 𝐵) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∖ cdif 3930 ∩ cin 3932 ⊆ wss 3933 ∅c0 4315 ↦ cmpt 5207 ran crn 5668 ↾ cres 5669 Oncon0 6365 ⟶wf 6538 –1-1→wf1 6539 –1-1-onto→wf1o 6541 (class class class)co 7414 +o coa 8486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-oadd 8493 |
| This theorem is referenced by: oacomf1o 8586 onadju 10217 |
| Copyright terms: Public domain | W3C validator |