MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacomf1olem Structured version   Visualization version   GIF version

Theorem oacomf1olem 8193
Description: Lemma for oacomf1o 8194. (Contributed by Mario Carneiro, 30-May-2015.)
Hypothesis
Ref Expression
oacomf1olem.1 𝐹 = (𝑥𝐴 ↦ (𝐵 +o 𝑥))
Assertion
Ref Expression
oacomf1olem ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴1-1-onto→ran 𝐹 ∧ (ran 𝐹𝐵) = ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem oacomf1olem
StepHypRef Expression
1 oaf1o 8192 . . . . . . 7 (𝐵 ∈ On → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵))
21adantl 484 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵))
3 f1of1 6617 . . . . . 6 ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵))
42, 3syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵))
5 onss 7508 . . . . . 6 (𝐴 ∈ On → 𝐴 ⊆ On)
65adantr 483 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ On)
7 f1ssres 6585 . . . . 5 (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵) ∧ 𝐴 ⊆ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴1-1→(On ∖ 𝐵))
84, 6, 7syl2anc 586 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴1-1→(On ∖ 𝐵))
96resmptd 5911 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = (𝑥𝐴 ↦ (𝐵 +o 𝑥)))
10 oacomf1olem.1 . . . . . 6 𝐹 = (𝑥𝐴 ↦ (𝐵 +o 𝑥))
119, 10syl6eqr 2877 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹)
12 f1eq1 6573 . . . . 5 (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹 → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴1-1→(On ∖ 𝐵)))
1311, 12syl 17 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴1-1→(On ∖ 𝐵)))
148, 13mpbid 234 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴1-1→(On ∖ 𝐵))
15 f1f1orn 6629 . . 3 (𝐹:𝐴1-1→(On ∖ 𝐵) → 𝐹:𝐴1-1-onto→ran 𝐹)
1614, 15syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴1-1-onto→ran 𝐹)
17 f1f 6578 . . . 4 (𝐹:𝐴1-1→(On ∖ 𝐵) → 𝐹:𝐴⟶(On ∖ 𝐵))
18 frn 6523 . . . 4 (𝐹:𝐴⟶(On ∖ 𝐵) → ran 𝐹 ⊆ (On ∖ 𝐵))
1914, 17, 183syl 18 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ (On ∖ 𝐵))
2019difss2d 4114 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ On)
21 reldisj 4405 . . . 4 (ran 𝐹 ⊆ On → ((ran 𝐹𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵)))
2220, 21syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ran 𝐹𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵)))
2319, 22mpbird 259 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran 𝐹𝐵) = ∅)
2416, 23jca 514 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴1-1-onto→ran 𝐹 ∧ (ran 𝐹𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  cdif 3936  cin 3938  wss 3939  c0 4294  cmpt 5149  ran crn 5559  cres 5560  Oncon0 6194  wf 6354  1-1wf1 6355  1-1-ontowf1o 6357  (class class class)co 7159   +o coa 8102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-oadd 8109
This theorem is referenced by:  oacomf1o  8194  onadju  9622
  Copyright terms: Public domain W3C validator