![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oacomf1olem | Structured version Visualization version GIF version |
Description: Lemma for oacomf1o 8561. (Contributed by Mario Carneiro, 30-May-2015.) |
Ref | Expression |
---|---|
oacomf1olem.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) |
Ref | Expression |
---|---|
oacomf1olem | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴–1-1-onto→ran 𝐹 ∧ (ran 𝐹 ∩ 𝐵) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oaf1o 8559 | . . . . . . 7 ⊢ (𝐵 ∈ On → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵)) | |
2 | 1 | adantl 483 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵)) |
3 | f1of1 6829 | . . . . . 6 ⊢ ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵)) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵)) |
5 | onss 7767 | . . . . . 6 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
6 | 5 | adantr 482 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ On) |
7 | f1ssres 6792 | . . . . 5 ⊢ (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵) ∧ 𝐴 ⊆ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵)) | |
8 | 4, 6, 7 | syl2anc 585 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵)) |
9 | 6 | resmptd 6038 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥))) |
10 | oacomf1olem.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) | |
11 | 9, 10 | eqtr4di 2791 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹) |
12 | f1eq1 6779 | . . . . 5 ⊢ (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹 → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴–1-1→(On ∖ 𝐵))) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴–1-1→(On ∖ 𝐵))) |
14 | 8, 13 | mpbid 231 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴–1-1→(On ∖ 𝐵)) |
15 | f1f1orn 6841 | . . 3 ⊢ (𝐹:𝐴–1-1→(On ∖ 𝐵) → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
16 | 14, 15 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴–1-1-onto→ran 𝐹) |
17 | f1f 6784 | . . . 4 ⊢ (𝐹:𝐴–1-1→(On ∖ 𝐵) → 𝐹:𝐴⟶(On ∖ 𝐵)) | |
18 | frn 6721 | . . . 4 ⊢ (𝐹:𝐴⟶(On ∖ 𝐵) → ran 𝐹 ⊆ (On ∖ 𝐵)) | |
19 | 14, 17, 18 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ (On ∖ 𝐵)) |
20 | 19 | difss2d 4133 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ On) |
21 | reldisj 4450 | . . . 4 ⊢ (ran 𝐹 ⊆ On → ((ran 𝐹 ∩ 𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵))) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ran 𝐹 ∩ 𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵))) |
23 | 19, 22 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran 𝐹 ∩ 𝐵) = ∅) |
24 | 16, 23 | jca 513 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴–1-1-onto→ran 𝐹 ∧ (ran 𝐹 ∩ 𝐵) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∖ cdif 3944 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 ↦ cmpt 5230 ran crn 5676 ↾ cres 5677 Oncon0 6361 ⟶wf 6536 –1-1→wf1 6537 –1-1-onto→wf1o 6539 (class class class)co 7404 +o coa 8458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-oadd 8465 |
This theorem is referenced by: oacomf1o 8561 onadju 10184 |
Copyright terms: Public domain | W3C validator |