| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oacomf1olem | Structured version Visualization version GIF version | ||
| Description: Lemma for oacomf1o 8582. (Contributed by Mario Carneiro, 30-May-2015.) |
| Ref | Expression |
|---|---|
| oacomf1olem.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) |
| Ref | Expression |
|---|---|
| oacomf1olem | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴–1-1-onto→ran 𝐹 ∧ (ran 𝐹 ∩ 𝐵) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oaf1o 8580 | . . . . . . 7 ⊢ (𝐵 ∈ On → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵)) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵)) |
| 3 | f1of1 6822 | . . . . . 6 ⊢ ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵)) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵)) |
| 5 | onss 7784 | . . . . . 6 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ On) |
| 7 | f1ssres 6786 | . . . . 5 ⊢ (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵) ∧ 𝐴 ⊆ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵)) | |
| 8 | 4, 6, 7 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵)) |
| 9 | 6 | resmptd 6032 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥))) |
| 10 | oacomf1olem.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) | |
| 11 | 9, 10 | eqtr4di 2789 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹) |
| 12 | f1eq1 6774 | . . . . 5 ⊢ (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹 → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴–1-1→(On ∖ 𝐵))) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴–1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴–1-1→(On ∖ 𝐵))) |
| 14 | 8, 13 | mpbid 232 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴–1-1→(On ∖ 𝐵)) |
| 15 | f1f1orn 6834 | . . 3 ⊢ (𝐹:𝐴–1-1→(On ∖ 𝐵) → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴–1-1-onto→ran 𝐹) |
| 17 | f1f 6779 | . . . 4 ⊢ (𝐹:𝐴–1-1→(On ∖ 𝐵) → 𝐹:𝐴⟶(On ∖ 𝐵)) | |
| 18 | frn 6718 | . . . 4 ⊢ (𝐹:𝐴⟶(On ∖ 𝐵) → ran 𝐹 ⊆ (On ∖ 𝐵)) | |
| 19 | 14, 17, 18 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ (On ∖ 𝐵)) |
| 20 | 19 | difss2d 4119 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ On) |
| 21 | reldisj 4433 | . . . 4 ⊢ (ran 𝐹 ⊆ On → ((ran 𝐹 ∩ 𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵))) | |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ran 𝐹 ∩ 𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵))) |
| 23 | 19, 22 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran 𝐹 ∩ 𝐵) = ∅) |
| 24 | 16, 23 | jca 511 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴–1-1-onto→ran 𝐹 ∧ (ran 𝐹 ∩ 𝐵) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 ↦ cmpt 5206 ran crn 5660 ↾ cres 5661 Oncon0 6357 ⟶wf 6532 –1-1→wf1 6533 –1-1-onto→wf1o 6535 (class class class)co 7410 +o coa 8482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-oadd 8489 |
| This theorem is referenced by: oacomf1o 8582 onadju 10213 |
| Copyright terms: Public domain | W3C validator |