Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem56 Structured version   Visualization version   GIF version

Theorem fourierdlem56 46322
Description: Derivative of the 𝐾 function on an interval not containing ' 0 '. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem56.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem56.a (𝜑 → (𝐴(,)𝐵) ⊆ ((-π[,]π) ∖ {0}))
fourierdlem56.r4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
Assertion
Ref Expression
fourierdlem56 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem fourierdlem56
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem56.a . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ((-π[,]π) ∖ {0}))
21difss2d 4088 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
32sselda 3930 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
4 1ex 11119 . . . . . . . 8 1 ∈ V
5 ovex 7388 . . . . . . . 8 (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V
64, 5ifex 4527 . . . . . . 7 if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ V
76a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ V)
8 fourierdlem56.k . . . . . . 7 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
98fvmpt2 6949 . . . . . 6 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ V) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
103, 7, 9syl2anc 584 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
11 fourierdlem56.r4 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
1211neneqd 2934 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
1312iffalsed 4487 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
14 elioore 13282 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
1514adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
1615recnd 11151 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
1716halfcld 12377 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ)
1817sincld 16046 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
19 2cnd 12214 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
20 fourierdlem44 46311 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
213, 11, 20syl2anc 584 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
22 2ne0 12240 . . . . . . . 8 2 ≠ 0
2322a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
2416, 18, 19, 21, 23divdiv1d 11939 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑠 / (sin‘(𝑠 / 2))) / 2) = (𝑠 / ((sin‘(𝑠 / 2)) · 2)))
2518, 19mulcomd 11144 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑠 / 2)) · 2) = (2 · (sin‘(𝑠 / 2))))
2625oveq2d 7371 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / ((sin‘(𝑠 / 2)) · 2)) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
2724, 26eqtr2d 2769 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) = ((𝑠 / (sin‘(𝑠 / 2))) / 2))
2810, 13, 273eqtrd 2772 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = ((𝑠 / (sin‘(𝑠 / 2))) / 2))
2928mpteq2dva 5188 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑠 / (sin‘(𝑠 / 2))) / 2)))
3029oveq2d 7371 . 2 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠))) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑠 / (sin‘(𝑠 / 2))) / 2))))
31 reelprrecn 11109 . . . 4 ℝ ∈ {ℝ, ℂ}
3231a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
3316, 18, 21divcld 11908 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (sin‘(𝑠 / 2))) ∈ ℂ)
34 1red 11124 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
3515rehalfcld 12379 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
3635resincld 16059 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
3734, 36remulcld 11153 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 · (sin‘(𝑠 / 2))) ∈ ℝ)
3835recoscld 16060 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℝ)
3934rehalfcld 12379 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℝ)
4038, 39remulcld 11153 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑠 / 2)) · (1 / 2)) ∈ ℝ)
4140, 15remulcld 11153 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠) ∈ ℝ)
4237, 41resubcld 11556 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) ∈ ℝ)
4336resqcld 14039 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑠 / 2))↑2) ∈ ℝ)
44 2z 12514 . . . . . 6 2 ∈ ℤ
4544a1i 11 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℤ)
4618, 21, 45expne0d 14066 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑠 / 2))↑2) ≠ 0)
4742, 43, 46redivcld 11960 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) ∈ ℝ)
48 1cnd 11118 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ)
49 recn 11107 . . . . . 6 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
5049adantl 481 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℂ)
51 1red 11124 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
5232dvmptid 25908 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1))
53 ioossre 13314 . . . . . 6 (𝐴(,)𝐵) ⊆ ℝ
5453a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
55 tgioo4 24740 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
56 eqid 2733 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
57 iooretop 24700 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
5857a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
5932, 50, 51, 52, 54, 55, 56, 58dvmptres 25914 . . . 4 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
60 elsni 4594 . . . . . . 7 ((sin‘(𝑠 / 2)) ∈ {0} → (sin‘(𝑠 / 2)) = 0)
6160necon3ai 2954 . . . . . 6 ((sin‘(𝑠 / 2)) ≠ 0 → ¬ (sin‘(𝑠 / 2)) ∈ {0})
6221, 61syl 17 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ (sin‘(𝑠 / 2)) ∈ {0})
6318, 62eldifd 3909 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ (ℂ ∖ {0}))
6417coscld 16047 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℂ)
6548halfcld 12377 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℂ)
6664, 65mulcld 11143 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑠 / 2)) · (1 / 2)) ∈ ℂ)
67 cnelprrecn 11110 . . . . . 6 ℂ ∈ {ℝ, ℂ}
6867a1i 11 . . . . 5 (𝜑 → ℂ ∈ {ℝ, ℂ})
69 sinf 16040 . . . . . . 7 sin:ℂ⟶ℂ
7069a1i 11 . . . . . 6 (𝜑 → sin:ℂ⟶ℂ)
7170ffvelcdmda 7026 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ)
72 cosf 16041 . . . . . . 7 cos:ℂ⟶ℂ
7372a1i 11 . . . . . 6 (𝜑 → cos:ℂ⟶ℂ)
7473ffvelcdmda 7026 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (cos‘𝑥) ∈ ℂ)
75 2cnd 12214 . . . . . 6 (𝜑 → 2 ∈ ℂ)
7622a1i 11 . . . . . 6 (𝜑 → 2 ≠ 0)
7732, 16, 34, 59, 75, 76dvmptdivc 25916 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / 2))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 2)))
78 ffn 6659 . . . . . . . . . . 11 (sin:ℂ⟶ℂ → sin Fn ℂ)
7969, 78ax-mp 5 . . . . . . . . . 10 sin Fn ℂ
80 dffn5 6889 . . . . . . . . . 10 (sin Fn ℂ ↔ sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥)))
8179, 80mpbi 230 . . . . . . . . 9 sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥))
8281eqcomi 2742 . . . . . . . 8 (𝑥 ∈ ℂ ↦ (sin‘𝑥)) = sin
8382oveq2i 7366 . . . . . . 7 (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (ℂ D sin)
84 dvsin 25933 . . . . . . 7 (ℂ D sin) = cos
85 ffn 6659 . . . . . . . . 9 (cos:ℂ⟶ℂ → cos Fn ℂ)
8672, 85ax-mp 5 . . . . . . . 8 cos Fn ℂ
87 dffn5 6889 . . . . . . . 8 (cos Fn ℂ ↔ cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
8886, 87mpbi 230 . . . . . . 7 cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))
8983, 84, 883eqtri 2760 . . . . . 6 (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥))
9089a1i 11 . . . . 5 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
91 fveq2 6831 . . . . 5 (𝑥 = (𝑠 / 2) → (sin‘𝑥) = (sin‘(𝑠 / 2)))
92 fveq2 6831 . . . . 5 (𝑥 = (𝑠 / 2) → (cos‘𝑥) = (cos‘(𝑠 / 2)))
9332, 68, 17, 39, 71, 74, 77, 90, 91, 92dvmptco 25923 . . . 4 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑠 / 2)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((cos‘(𝑠 / 2)) · (1 / 2))))
9432, 16, 48, 59, 63, 66, 93dvmptdiv 25925 . . 3 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2))))
9532, 33, 47, 94, 75, 76dvmptdivc 25916 . 2 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑠 / (sin‘(𝑠 / 2))) / 2))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
9614recnd 11151 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℂ)
9796halfcld 12377 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℂ)
9897sincld 16046 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (sin‘(𝑠 / 2)) ∈ ℂ)
9998mullidd 11141 . . . . . . 7 (𝑠 ∈ (𝐴(,)𝐵) → (1 · (sin‘(𝑠 / 2))) = (sin‘(𝑠 / 2)))
10097coscld 16047 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘(𝑠 / 2)) ∈ ℂ)
101 2cnd 12214 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℂ)
10222a1i 11 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 2 ≠ 0)
103100, 101, 102divrecd 11911 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → ((cos‘(𝑠 / 2)) / 2) = ((cos‘(𝑠 / 2)) · (1 / 2)))
104103eqcomd 2739 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → ((cos‘(𝑠 / 2)) · (1 / 2)) = ((cos‘(𝑠 / 2)) / 2))
105104oveq1d 7370 . . . . . . 7 (𝑠 ∈ (𝐴(,)𝐵) → (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠) = (((cos‘(𝑠 / 2)) / 2) · 𝑠))
10699, 105oveq12d 7373 . . . . . 6 (𝑠 ∈ (𝐴(,)𝐵) → ((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) = ((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)))
107106oveq1d 7370 . . . . 5 (𝑠 ∈ (𝐴(,)𝐵) → (((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) = (((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)))
108107oveq1d 7370 . . . 4 (𝑠 ∈ (𝐴(,)𝐵) → ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2) = ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2))
109108mpteq2ia 5190 . . 3 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2))
110109a1i 11 . 2 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
11130, 95, 1103eqtrd 2772 1 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  cdif 3895  wss 3898  ifcif 4476  {csn 4577  {cpr 4579  cmpt 5176  ran crn 5622   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  1c1 11018   · cmul 11022  cmin 11355  -cneg 11356   / cdiv 11785  2c2 12191  cz 12479  (,)cioo 13252  [,]cicc 13255  cexp 13975  sincsin 15977  cosccos 15978  πcpi 15980  TopOpenctopn 17332  topGenctg 17348  fldccnfld 21300   D cdv 25811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-ef 15981  df-sin 15983  df-cos 15984  df-pi 15986  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-t1 23249  df-haus 23250  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-limc 25814  df-dv 25815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator