Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem56 Structured version   Visualization version   GIF version

Theorem fourierdlem56 46160
Description: Derivative of the 𝐾 function on an interval not containing ' 0 '. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem56.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem56.a (𝜑 → (𝐴(,)𝐵) ⊆ ((-π[,]π) ∖ {0}))
fourierdlem56.r4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
Assertion
Ref Expression
fourierdlem56 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem fourierdlem56
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem56.a . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ((-π[,]π) ∖ {0}))
21difss2d 4102 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
32sselda 3946 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
4 1ex 11170 . . . . . . . 8 1 ∈ V
5 ovex 7420 . . . . . . . 8 (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V
64, 5ifex 4539 . . . . . . 7 if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ V
76a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ V)
8 fourierdlem56.k . . . . . . 7 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
98fvmpt2 6979 . . . . . 6 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ V) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
103, 7, 9syl2anc 584 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
11 fourierdlem56.r4 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
1211neneqd 2930 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
1312iffalsed 4499 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
14 elioore 13336 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
1514adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
1615recnd 11202 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
1716halfcld 12427 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ)
1817sincld 16098 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
19 2cnd 12264 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
20 fourierdlem44 46149 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
213, 11, 20syl2anc 584 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
22 2ne0 12290 . . . . . . . 8 2 ≠ 0
2322a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
2416, 18, 19, 21, 23divdiv1d 11989 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑠 / (sin‘(𝑠 / 2))) / 2) = (𝑠 / ((sin‘(𝑠 / 2)) · 2)))
2518, 19mulcomd 11195 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑠 / 2)) · 2) = (2 · (sin‘(𝑠 / 2))))
2625oveq2d 7403 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / ((sin‘(𝑠 / 2)) · 2)) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
2724, 26eqtr2d 2765 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) = ((𝑠 / (sin‘(𝑠 / 2))) / 2))
2810, 13, 273eqtrd 2768 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = ((𝑠 / (sin‘(𝑠 / 2))) / 2))
2928mpteq2dva 5200 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑠 / (sin‘(𝑠 / 2))) / 2)))
3029oveq2d 7403 . 2 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠))) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑠 / (sin‘(𝑠 / 2))) / 2))))
31 reelprrecn 11160 . . . 4 ℝ ∈ {ℝ, ℂ}
3231a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
3316, 18, 21divcld 11958 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (sin‘(𝑠 / 2))) ∈ ℂ)
34 1red 11175 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
3515rehalfcld 12429 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
3635resincld 16111 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
3734, 36remulcld 11204 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 · (sin‘(𝑠 / 2))) ∈ ℝ)
3835recoscld 16112 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℝ)
3934rehalfcld 12429 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℝ)
4038, 39remulcld 11204 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑠 / 2)) · (1 / 2)) ∈ ℝ)
4140, 15remulcld 11204 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠) ∈ ℝ)
4237, 41resubcld 11606 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) ∈ ℝ)
4336resqcld 14090 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑠 / 2))↑2) ∈ ℝ)
44 2z 12565 . . . . . 6 2 ∈ ℤ
4544a1i 11 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℤ)
4618, 21, 45expne0d 14117 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑠 / 2))↑2) ≠ 0)
4742, 43, 46redivcld 12010 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) ∈ ℝ)
48 1cnd 11169 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ)
49 recn 11158 . . . . . 6 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
5049adantl 481 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℂ)
51 1red 11175 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
5232dvmptid 25861 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1))
53 ioossre 13368 . . . . . 6 (𝐴(,)𝐵) ⊆ ℝ
5453a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
55 tgioo4 24693 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
56 eqid 2729 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
57 iooretop 24653 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
5857a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
5932, 50, 51, 52, 54, 55, 56, 58dvmptres 25867 . . . 4 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
60 elsni 4606 . . . . . . 7 ((sin‘(𝑠 / 2)) ∈ {0} → (sin‘(𝑠 / 2)) = 0)
6160necon3ai 2950 . . . . . 6 ((sin‘(𝑠 / 2)) ≠ 0 → ¬ (sin‘(𝑠 / 2)) ∈ {0})
6221, 61syl 17 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ (sin‘(𝑠 / 2)) ∈ {0})
6318, 62eldifd 3925 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ (ℂ ∖ {0}))
6417coscld 16099 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℂ)
6548halfcld 12427 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℂ)
6664, 65mulcld 11194 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑠 / 2)) · (1 / 2)) ∈ ℂ)
67 cnelprrecn 11161 . . . . . 6 ℂ ∈ {ℝ, ℂ}
6867a1i 11 . . . . 5 (𝜑 → ℂ ∈ {ℝ, ℂ})
69 sinf 16092 . . . . . . 7 sin:ℂ⟶ℂ
7069a1i 11 . . . . . 6 (𝜑 → sin:ℂ⟶ℂ)
7170ffvelcdmda 7056 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ)
72 cosf 16093 . . . . . . 7 cos:ℂ⟶ℂ
7372a1i 11 . . . . . 6 (𝜑 → cos:ℂ⟶ℂ)
7473ffvelcdmda 7056 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (cos‘𝑥) ∈ ℂ)
75 2cnd 12264 . . . . . 6 (𝜑 → 2 ∈ ℂ)
7622a1i 11 . . . . . 6 (𝜑 → 2 ≠ 0)
7732, 16, 34, 59, 75, 76dvmptdivc 25869 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / 2))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 2)))
78 ffn 6688 . . . . . . . . . . 11 (sin:ℂ⟶ℂ → sin Fn ℂ)
7969, 78ax-mp 5 . . . . . . . . . 10 sin Fn ℂ
80 dffn5 6919 . . . . . . . . . 10 (sin Fn ℂ ↔ sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥)))
8179, 80mpbi 230 . . . . . . . . 9 sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥))
8281eqcomi 2738 . . . . . . . 8 (𝑥 ∈ ℂ ↦ (sin‘𝑥)) = sin
8382oveq2i 7398 . . . . . . 7 (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (ℂ D sin)
84 dvsin 25886 . . . . . . 7 (ℂ D sin) = cos
85 ffn 6688 . . . . . . . . 9 (cos:ℂ⟶ℂ → cos Fn ℂ)
8672, 85ax-mp 5 . . . . . . . 8 cos Fn ℂ
87 dffn5 6919 . . . . . . . 8 (cos Fn ℂ ↔ cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
8886, 87mpbi 230 . . . . . . 7 cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))
8983, 84, 883eqtri 2756 . . . . . 6 (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥))
9089a1i 11 . . . . 5 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
91 fveq2 6858 . . . . 5 (𝑥 = (𝑠 / 2) → (sin‘𝑥) = (sin‘(𝑠 / 2)))
92 fveq2 6858 . . . . 5 (𝑥 = (𝑠 / 2) → (cos‘𝑥) = (cos‘(𝑠 / 2)))
9332, 68, 17, 39, 71, 74, 77, 90, 91, 92dvmptco 25876 . . . 4 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑠 / 2)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((cos‘(𝑠 / 2)) · (1 / 2))))
9432, 16, 48, 59, 63, 66, 93dvmptdiv 25878 . . 3 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2))))
9532, 33, 47, 94, 75, 76dvmptdivc 25869 . 2 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑠 / (sin‘(𝑠 / 2))) / 2))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
9614recnd 11202 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℂ)
9796halfcld 12427 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℂ)
9897sincld 16098 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (sin‘(𝑠 / 2)) ∈ ℂ)
9998mullidd 11192 . . . . . . 7 (𝑠 ∈ (𝐴(,)𝐵) → (1 · (sin‘(𝑠 / 2))) = (sin‘(𝑠 / 2)))
10097coscld 16099 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘(𝑠 / 2)) ∈ ℂ)
101 2cnd 12264 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℂ)
10222a1i 11 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 2 ≠ 0)
103100, 101, 102divrecd 11961 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → ((cos‘(𝑠 / 2)) / 2) = ((cos‘(𝑠 / 2)) · (1 / 2)))
104103eqcomd 2735 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → ((cos‘(𝑠 / 2)) · (1 / 2)) = ((cos‘(𝑠 / 2)) / 2))
105104oveq1d 7402 . . . . . . 7 (𝑠 ∈ (𝐴(,)𝐵) → (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠) = (((cos‘(𝑠 / 2)) / 2) · 𝑠))
10699, 105oveq12d 7405 . . . . . 6 (𝑠 ∈ (𝐴(,)𝐵) → ((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) = ((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)))
107106oveq1d 7402 . . . . 5 (𝑠 ∈ (𝐴(,)𝐵) → (((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) = (((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)))
108107oveq1d 7402 . . . 4 (𝑠 ∈ (𝐴(,)𝐵) → ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2) = ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2))
109108mpteq2ia 5202 . . 3 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2))
110109a1i 11 . 2 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
11130, 95, 1103eqtrd 2768 1 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  cdif 3911  wss 3914  ifcif 4488  {csn 4589  {cpr 4591  cmpt 5188  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  cz 12529  (,)cioo 13306  [,]cicc 13309  cexp 14026  sincsin 16029  cosccos 16030  πcpi 16032  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-t1 23201  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator