Step | Hyp | Ref
| Expression |
1 | | ramub1.3 |
. . 3
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
2 | | ramub1.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | | nnm1nn0 12204 |
. . . 4
⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈
ℕ0) |
4 | 2, 3 | syl 17 |
. . 3
⊢ (𝜑 → (𝑀 − 1) ∈
ℕ0) |
5 | | ramub1.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Fin) |
6 | | ramub1.1 |
. . 3
⊢ (𝜑 → 𝐺:𝑅⟶ℕ0) |
7 | | ramub1.2 |
. . 3
⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈
ℕ0) |
8 | | ramub1.4 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ Fin) |
9 | | diffi 8979 |
. . . 4
⊢ (𝑆 ∈ Fin → (𝑆 ∖ {𝑋}) ∈ Fin) |
10 | 8, 9 | syl 17 |
. . 3
⊢ (𝜑 → (𝑆 ∖ {𝑋}) ∈ Fin) |
11 | 7 | nn0red 12224 |
. . . . 5
⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℝ) |
12 | 11 | leidd 11471 |
. . . 4
⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ≤ ((𝑀 − 1) Ramsey 𝐺)) |
13 | | hashcl 13999 |
. . . . . . 7
⊢ ((𝑆 ∖ {𝑋}) ∈ Fin → (♯‘(𝑆 ∖ {𝑋})) ∈
ℕ0) |
14 | 10, 13 | syl 17 |
. . . . . 6
⊢ (𝜑 → (♯‘(𝑆 ∖ {𝑋})) ∈
ℕ0) |
15 | 14 | nn0cnd 12225 |
. . . . 5
⊢ (𝜑 → (♯‘(𝑆 ∖ {𝑋})) ∈ ℂ) |
16 | 7 | nn0cnd 12225 |
. . . . 5
⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℂ) |
17 | | 1cnd 10901 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℂ) |
18 | | undif1 4406 |
. . . . . . . 8
⊢ ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = (𝑆 ∪ {𝑋}) |
19 | | ramub1.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
20 | 19 | snssd 4739 |
. . . . . . . . 9
⊢ (𝜑 → {𝑋} ⊆ 𝑆) |
21 | | ssequn2 4113 |
. . . . . . . . 9
⊢ ({𝑋} ⊆ 𝑆 ↔ (𝑆 ∪ {𝑋}) = 𝑆) |
22 | 20, 21 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 ∪ {𝑋}) = 𝑆) |
23 | 18, 22 | eqtrid 2790 |
. . . . . . 7
⊢ (𝜑 → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆) |
24 | 23 | fveq2d 6760 |
. . . . . 6
⊢ (𝜑 → (♯‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = (♯‘𝑆)) |
25 | | neldifsnd 4723 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) |
26 | | hashunsng 14035 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑆 → (((𝑆 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) → (♯‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑆 ∖ {𝑋})) + 1))) |
27 | 19, 26 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (((𝑆 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) → (♯‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑆 ∖ {𝑋})) + 1))) |
28 | 10, 25, 27 | mp2and 695 |
. . . . . 6
⊢ (𝜑 → (♯‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑆 ∖ {𝑋})) + 1)) |
29 | | ramub1.5 |
. . . . . 6
⊢ (𝜑 → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1)) |
30 | 24, 28, 29 | 3eqtr3d 2786 |
. . . . 5
⊢ (𝜑 → ((♯‘(𝑆 ∖ {𝑋})) + 1) = (((𝑀 − 1) Ramsey 𝐺) + 1)) |
31 | 15, 16, 17, 30 | addcan2ad 11111 |
. . . 4
⊢ (𝜑 → (♯‘(𝑆 ∖ {𝑋})) = ((𝑀 − 1) Ramsey 𝐺)) |
32 | 12, 31 | breqtrrd 5098 |
. . 3
⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ≤ (♯‘(𝑆 ∖ {𝑋}))) |
33 | | ramub1.6 |
. . . . . 6
⊢ (𝜑 → 𝐾:(𝑆𝐶𝑀)⟶𝑅) |
34 | 33 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝐾:(𝑆𝐶𝑀)⟶𝑅) |
35 | | fveqeq2 6765 |
. . . . . . 7
⊢ (𝑥 = (𝑢 ∪ {𝑋}) → ((♯‘𝑥) = 𝑀 ↔ (♯‘(𝑢 ∪ {𝑋})) = 𝑀)) |
36 | 1 | hashbcval 16631 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 ∖ {𝑋}) ∈ Fin ∧ (𝑀 − 1) ∈ ℕ0)
→ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) = {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (♯‘𝑥) = (𝑀 − 1)}) |
37 | 10, 4, 36 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) = {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (♯‘𝑥) = (𝑀 − 1)}) |
38 | 37 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↔ 𝑢 ∈ {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (♯‘𝑥) = (𝑀 − 1)})) |
39 | | fveqeq2 6765 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑢 → ((♯‘𝑥) = (𝑀 − 1) ↔ (♯‘𝑢) = (𝑀 − 1))) |
40 | 39 | elrab 3617 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (♯‘𝑥) = (𝑀 − 1)} ↔ (𝑢 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∧ (♯‘𝑢) = (𝑀 − 1))) |
41 | 38, 40 | bitrdi 286 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↔ (𝑢 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∧ (♯‘𝑢) = (𝑀 − 1)))) |
42 | 41 | simprbda 498 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ∈ 𝒫 (𝑆 ∖ {𝑋})) |
43 | 42 | elpwid 4541 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ⊆ (𝑆 ∖ {𝑋})) |
44 | 43 | difss2d 4065 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ⊆ 𝑆) |
45 | 20 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → {𝑋} ⊆ 𝑆) |
46 | 44, 45 | unssd 4116 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ⊆ 𝑆) |
47 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑢 ∈ V |
48 | | snex 5349 |
. . . . . . . . . 10
⊢ {𝑋} ∈ V |
49 | 47, 48 | unex 7574 |
. . . . . . . . 9
⊢ (𝑢 ∪ {𝑋}) ∈ V |
50 | 49 | elpw 4534 |
. . . . . . . 8
⊢ ((𝑢 ∪ {𝑋}) ∈ 𝒫 𝑆 ↔ (𝑢 ∪ {𝑋}) ⊆ 𝑆) |
51 | 46, 50 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ∈ 𝒫 𝑆) |
52 | 10 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑆 ∖ {𝑋}) ∈ Fin) |
53 | 52, 43 | ssfid 8971 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ∈ Fin) |
54 | | neldifsnd 4723 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) |
55 | 43, 54 | ssneldd 3920 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ¬ 𝑋 ∈ 𝑢) |
56 | 19 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑋 ∈ 𝑆) |
57 | | hashunsng 14035 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑆 → ((𝑢 ∈ Fin ∧ ¬ 𝑋 ∈ 𝑢) → (♯‘(𝑢 ∪ {𝑋})) = ((♯‘𝑢) + 1))) |
58 | 56, 57 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ((𝑢 ∈ Fin ∧ ¬ 𝑋 ∈ 𝑢) → (♯‘(𝑢 ∪ {𝑋})) = ((♯‘𝑢) + 1))) |
59 | 53, 55, 58 | mp2and 695 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (♯‘(𝑢 ∪ {𝑋})) = ((♯‘𝑢) + 1)) |
60 | 41 | simplbda 499 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (♯‘𝑢) = (𝑀 − 1)) |
61 | 60 | oveq1d 7270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ((♯‘𝑢) + 1) = ((𝑀 − 1) + 1)) |
62 | 2 | nncnd 11919 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℂ) |
63 | | ax-1cn 10860 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
64 | | npcan 11160 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑀 −
1) + 1) = 𝑀) |
65 | 62, 63, 64 | sylancl 585 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀 − 1) + 1) = 𝑀) |
66 | 65 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀) |
67 | 59, 61, 66 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (♯‘(𝑢 ∪ {𝑋})) = 𝑀) |
68 | 35, 51, 67 | elrabd 3619 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀}) |
69 | 2 | nnnn0d 12223 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
70 | 1 | hashbcval 16631 |
. . . . . . . 8
⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ ℕ0)
→ (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀}) |
71 | 8, 69, 70 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀}) |
72 | 71 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀}) |
73 | 68, 72 | eleqtrrd 2842 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ∈ (𝑆𝐶𝑀)) |
74 | 34, 73 | ffvelrnd 6944 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝐾‘(𝑢 ∪ {𝑋})) ∈ 𝑅) |
75 | | ramub1.h |
. . . 4
⊢ 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋}))) |
76 | 74, 75 | fmptd 6970 |
. . 3
⊢ (𝜑 → 𝐻:((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))⟶𝑅) |
77 | 1, 4, 5, 6, 7, 10,
32, 76 | rami 16644 |
. 2
⊢ (𝜑 → ∃𝑑 ∈ 𝑅 ∃𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑}))) |
78 | 69 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → 𝑀 ∈
ℕ0) |
79 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → 𝑅 ∈ Fin) |
80 | | ramub1.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑅⟶ℕ) |
81 | 80 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → 𝐹:𝑅⟶ℕ) |
82 | | simprll 775 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → 𝑑 ∈ 𝑅) |
83 | 81, 82 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → (𝐹‘𝑑) ∈ ℕ) |
84 | | nnm1nn0 12204 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑑) ∈ ℕ → ((𝐹‘𝑑) − 1) ∈
ℕ0) |
85 | 83, 84 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → ((𝐹‘𝑑) − 1) ∈
ℕ0) |
86 | 85 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ 𝑦 ∈ 𝑅) → ((𝐹‘𝑑) − 1) ∈
ℕ0) |
87 | 81 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ 𝑦 ∈ 𝑅) → (𝐹‘𝑦) ∈ ℕ) |
88 | 87 | nnnn0d 12223 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ 𝑦 ∈ 𝑅) → (𝐹‘𝑦) ∈
ℕ0) |
89 | 86, 88 | ifcld 4502 |
. . . . . . 7
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ 𝑦 ∈ 𝑅) → if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦)) ∈
ℕ0) |
90 | | eqid 2738 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦))) = (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦))) |
91 | 89, 90 | fmptd 6970 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦))):𝑅⟶ℕ0) |
92 | | equequ2 2030 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑑 → (𝑦 = 𝑥 ↔ 𝑦 = 𝑑)) |
93 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑑 → (𝐹‘𝑥) = (𝐹‘𝑑)) |
94 | 93 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑑 → ((𝐹‘𝑥) − 1) = ((𝐹‘𝑑) − 1)) |
95 | 92, 94 | ifbieq1d 4480 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑑 → if(𝑦 = 𝑥, ((𝐹‘𝑥) − 1), (𝐹‘𝑦)) = if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦))) |
96 | 95 | mpteq2dv 5172 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑑 → (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝐹‘𝑥) − 1), (𝐹‘𝑦))) = (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦)))) |
97 | 96 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑥 = 𝑑 → (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝐹‘𝑥) − 1), (𝐹‘𝑦)))) = (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦))))) |
98 | | ramub1.g |
. . . . . . . . 9
⊢ 𝐺 = (𝑥 ∈ 𝑅 ↦ (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝐹‘𝑥) − 1), (𝐹‘𝑦))))) |
99 | | ovex 7288 |
. . . . . . . . 9
⊢ (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦)))) ∈ V |
100 | 97, 98, 99 | fvmpt 6857 |
. . . . . . . 8
⊢ (𝑑 ∈ 𝑅 → (𝐺‘𝑑) = (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦))))) |
101 | 82, 100 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → (𝐺‘𝑑) = (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦))))) |
102 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → 𝐺:𝑅⟶ℕ0) |
103 | 102, 82 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → (𝐺‘𝑑) ∈
ℕ0) |
104 | 101, 103 | eqeltrrd 2840 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦)))) ∈
ℕ0) |
105 | | simprlr 776 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) |
106 | | simprrl 777 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → (𝐺‘𝑑) ≤ (♯‘𝑤)) |
107 | 101, 106 | eqbrtrrd 5094 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦)))) ≤ (♯‘𝑤)) |
108 | 33 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → 𝐾:(𝑆𝐶𝑀)⟶𝑅) |
109 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → 𝑆 ∈ Fin) |
110 | 105 | elpwid 4541 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → 𝑤 ⊆ (𝑆 ∖ {𝑋})) |
111 | 110 | difss2d 4065 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → 𝑤 ⊆ 𝑆) |
112 | 1 | hashbcss 16633 |
. . . . . . . 8
⊢ ((𝑆 ∈ Fin ∧ 𝑤 ⊆ 𝑆 ∧ 𝑀 ∈ ℕ0) → (𝑤𝐶𝑀) ⊆ (𝑆𝐶𝑀)) |
113 | 109, 111,
78, 112 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → (𝑤𝐶𝑀) ⊆ (𝑆𝐶𝑀)) |
114 | 108, 113 | fssresd 6625 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → (𝐾 ↾ (𝑤𝐶𝑀)):(𝑤𝐶𝑀)⟶𝑅) |
115 | 1, 78, 79, 91, 104, 105, 107, 114 | rami 16644 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → ∃𝑐 ∈ 𝑅 ∃𝑣 ∈ 𝒫 𝑤(((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}))) |
116 | | equequ1 2029 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑐 → (𝑦 = 𝑑 ↔ 𝑐 = 𝑑)) |
117 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑐 → (𝐹‘𝑦) = (𝐹‘𝑐)) |
118 | 116, 117 | ifbieq2d 4482 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑐 → if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦)) = if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐))) |
119 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑑) − 1) ∈ V |
120 | | fvex 6769 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝑐) ∈ V |
121 | 119, 120 | ifex 4506 |
. . . . . . . . . . . . 13
⊢ if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ∈ V |
122 | 118, 90, 121 | fvmpt 6857 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ 𝑅 → ((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦)))‘𝑐) = if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐))) |
123 | 122 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ (𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤)) → ((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦)))‘𝑐) = if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐))) |
124 | 123 | breq1d 5080 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ (𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤)) → (((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦)))‘𝑐) ≤ (♯‘𝑣) ↔ if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣))) |
125 | 124 | anbi1d 629 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ (𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤)) → ((((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) ↔ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) |
126 | 2 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑀 ∈ ℕ) |
127 | 5 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑅 ∈ Fin) |
128 | 80 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝐹:𝑅⟶ℕ) |
129 | 6 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝐺:𝑅⟶ℕ0) |
130 | 7 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → ((𝑀 − 1) Ramsey 𝐺) ∈
ℕ0) |
131 | 8 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑆 ∈ Fin) |
132 | 29 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1)) |
133 | 33 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝐾:(𝑆𝐶𝑀)⟶𝑅) |
134 | 19 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑋 ∈ 𝑆) |
135 | 82 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑑 ∈ 𝑅) |
136 | 110 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑤 ⊆ (𝑆 ∖ {𝑋})) |
137 | 106 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝐺‘𝑑) ≤ (♯‘𝑤)) |
138 | | simprrr 778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})) |
139 | 138 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})) |
140 | | simprll 775 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑐 ∈ 𝑅) |
141 | | simprlr 776 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑣 ∈ 𝒫 𝑤) |
142 | 141 | elpwid 4541 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑣 ⊆ 𝑤) |
143 | | simprrl 777 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣)) |
144 | | simprrr 778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) |
145 | | cnvresima 6122 |
. . . . . . . . . . . . 13
⊢ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}) = ((◡𝐾 “ {𝑐}) ∩ (𝑤𝐶𝑀)) |
146 | | inss1 4159 |
. . . . . . . . . . . . 13
⊢ ((◡𝐾 “ {𝑐}) ∩ (𝑤𝐶𝑀)) ⊆ (◡𝐾 “ {𝑐}) |
147 | 145, 146 | eqsstri 3951 |
. . . . . . . . . . . 12
⊢ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}) ⊆ (◡𝐾 “ {𝑐}) |
148 | 144, 147 | sstrdi 3929 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝑣𝐶𝑀) ⊆ (◡𝐾 “ {𝑐})) |
149 | 126, 127,
128, 98, 129, 130, 1, 131, 132, 133, 134, 75, 135, 136, 137, 139, 140, 142, 143, 148 | ramub1lem1 16655 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ ((𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝑐}))) |
150 | 149 | expr 456 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ (𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤)) → ((if(𝑐 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝑐})))) |
151 | 125, 150 | sylbid 239 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ (𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤)) → ((((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝑐})))) |
152 | 151 | anassrs 467 |
. . . . . . 7
⊢ ((((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ 𝑐 ∈ 𝑅) ∧ 𝑣 ∈ 𝒫 𝑤) → ((((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝑐})))) |
153 | 152 | rexlimdva 3212 |
. . . . . 6
⊢ (((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) ∧ 𝑐 ∈ 𝑅) → (∃𝑣 ∈ 𝒫 𝑤(((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝑐})))) |
154 | 153 | reximdva 3202 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → (∃𝑐 ∈ 𝑅 ∃𝑣 ∈ 𝒫 𝑤(((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑑, ((𝐹‘𝑑) − 1), (𝐹‘𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ (◡(𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝑐})))) |
155 | 115, 154 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ ((𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})))) → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝑐}))) |
156 | 155 | expr 456 |
. . 3
⊢ ((𝜑 ∧ (𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋}))) → (((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})) → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝑐})))) |
157 | 156 | rexlimdvva 3222 |
. 2
⊢ (𝜑 → (∃𝑑 ∈ 𝑅 ∃𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})((𝐺‘𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝑑})) → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝑐})))) |
158 | 77, 157 | mpd 15 |
1
⊢ (𝜑 → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝑐}))) |