MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1lem2 Structured version   Visualization version   GIF version

Theorem ramub1lem2 16998
Description: Lemma for ramub1 16999. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m (𝜑𝑀 ∈ ℕ)
ramub1.r (𝜑𝑅 ∈ Fin)
ramub1.f (𝜑𝐹:𝑅⟶ℕ)
ramub1.g 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
ramub1.1 (𝜑𝐺:𝑅⟶ℕ0)
ramub1.2 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
ramub1.3 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
ramub1.4 (𝜑𝑆 ∈ Fin)
ramub1.5 (𝜑 → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
ramub1.6 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
ramub1.x (𝜑𝑋𝑆)
ramub1.h 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
Assertion
Ref Expression
ramub1lem2 (𝜑 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
Distinct variable groups:   𝑥,𝑢,𝑐,𝑦,𝑧,𝐹   𝑎,𝑏,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧,𝑀   𝐺,𝑎,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧   𝑅,𝑐,𝑢,𝑥,𝑦,𝑧   𝜑,𝑐,𝑢,𝑥,𝑦,𝑧   𝑆,𝑎,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧   𝐶,𝑐,𝑢,𝑥,𝑦,𝑧   𝐻,𝑐,𝑢,𝑥,𝑦,𝑧   𝐾,𝑐,𝑢,𝑥,𝑦,𝑧   𝑋,𝑎,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑆(𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑏)   𝐻(𝑖,𝑎,𝑏)   𝐾(𝑖,𝑎,𝑏)   𝑋(𝑏)

Proof of Theorem ramub1lem2
Dummy variables 𝑑 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ramub1.3 . . 3 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 ramub1.m . . . 4 (𝜑𝑀 ∈ ℕ)
3 nnm1nn0 12483 . . . 4 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
42, 3syl 17 . . 3 (𝜑 → (𝑀 − 1) ∈ ℕ0)
5 ramub1.r . . 3 (𝜑𝑅 ∈ Fin)
6 ramub1.1 . . 3 (𝜑𝐺:𝑅⟶ℕ0)
7 ramub1.2 . . 3 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
8 ramub1.4 . . . 4 (𝜑𝑆 ∈ Fin)
9 diffi 9139 . . . 4 (𝑆 ∈ Fin → (𝑆 ∖ {𝑋}) ∈ Fin)
108, 9syl 17 . . 3 (𝜑 → (𝑆 ∖ {𝑋}) ∈ Fin)
117nn0red 12504 . . . . 5 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℝ)
1211leidd 11744 . . . 4 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ≤ ((𝑀 − 1) Ramsey 𝐺))
13 hashcl 14321 . . . . . . 7 ((𝑆 ∖ {𝑋}) ∈ Fin → (♯‘(𝑆 ∖ {𝑋})) ∈ ℕ0)
1410, 13syl 17 . . . . . 6 (𝜑 → (♯‘(𝑆 ∖ {𝑋})) ∈ ℕ0)
1514nn0cnd 12505 . . . . 5 (𝜑 → (♯‘(𝑆 ∖ {𝑋})) ∈ ℂ)
167nn0cnd 12505 . . . . 5 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℂ)
17 1cnd 11169 . . . . 5 (𝜑 → 1 ∈ ℂ)
18 undif1 4439 . . . . . . . 8 ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = (𝑆 ∪ {𝑋})
19 ramub1.x . . . . . . . . . 10 (𝜑𝑋𝑆)
2019snssd 4773 . . . . . . . . 9 (𝜑 → {𝑋} ⊆ 𝑆)
21 ssequn2 4152 . . . . . . . . 9 ({𝑋} ⊆ 𝑆 ↔ (𝑆 ∪ {𝑋}) = 𝑆)
2220, 21sylib 218 . . . . . . . 8 (𝜑 → (𝑆 ∪ {𝑋}) = 𝑆)
2318, 22eqtrid 2776 . . . . . . 7 (𝜑 → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆)
2423fveq2d 6862 . . . . . 6 (𝜑 → (♯‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = (♯‘𝑆))
25 neldifsnd 4757 . . . . . . 7 (𝜑 → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋}))
26 hashunsng 14357 . . . . . . . 8 (𝑋𝑆 → (((𝑆 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) → (♯‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑆 ∖ {𝑋})) + 1)))
2719, 26syl 17 . . . . . . 7 (𝜑 → (((𝑆 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) → (♯‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑆 ∖ {𝑋})) + 1)))
2810, 25, 27mp2and 699 . . . . . 6 (𝜑 → (♯‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑆 ∖ {𝑋})) + 1))
29 ramub1.5 . . . . . 6 (𝜑 → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
3024, 28, 293eqtr3d 2772 . . . . 5 (𝜑 → ((♯‘(𝑆 ∖ {𝑋})) + 1) = (((𝑀 − 1) Ramsey 𝐺) + 1))
3115, 16, 17, 30addcan2ad 11380 . . . 4 (𝜑 → (♯‘(𝑆 ∖ {𝑋})) = ((𝑀 − 1) Ramsey 𝐺))
3212, 31breqtrrd 5135 . . 3 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ≤ (♯‘(𝑆 ∖ {𝑋})))
33 ramub1.6 . . . . . 6 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
3433adantr 480 . . . . 5 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝐾:(𝑆𝐶𝑀)⟶𝑅)
35 fveqeq2 6867 . . . . . . 7 (𝑥 = (𝑢 ∪ {𝑋}) → ((♯‘𝑥) = 𝑀 ↔ (♯‘(𝑢 ∪ {𝑋})) = 𝑀))
361hashbcval 16973 . . . . . . . . . . . . . . 15 (((𝑆 ∖ {𝑋}) ∈ Fin ∧ (𝑀 − 1) ∈ ℕ0) → ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) = {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (♯‘𝑥) = (𝑀 − 1)})
3710, 4, 36syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) = {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (♯‘𝑥) = (𝑀 − 1)})
3837eleq2d 2814 . . . . . . . . . . . . 13 (𝜑 → (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↔ 𝑢 ∈ {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (♯‘𝑥) = (𝑀 − 1)}))
39 fveqeq2 6867 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → ((♯‘𝑥) = (𝑀 − 1) ↔ (♯‘𝑢) = (𝑀 − 1)))
4039elrab 3659 . . . . . . . . . . . . 13 (𝑢 ∈ {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (♯‘𝑥) = (𝑀 − 1)} ↔ (𝑢 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∧ (♯‘𝑢) = (𝑀 − 1)))
4138, 40bitrdi 287 . . . . . . . . . . . 12 (𝜑 → (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↔ (𝑢 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∧ (♯‘𝑢) = (𝑀 − 1))))
4241simprbda 498 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ∈ 𝒫 (𝑆 ∖ {𝑋}))
4342elpwid 4572 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ⊆ (𝑆 ∖ {𝑋}))
4443difss2d 4102 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢𝑆)
4520adantr 480 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → {𝑋} ⊆ 𝑆)
4644, 45unssd 4155 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ⊆ 𝑆)
47 vex 3451 . . . . . . . . . 10 𝑢 ∈ V
48 snex 5391 . . . . . . . . . 10 {𝑋} ∈ V
4947, 48unex 7720 . . . . . . . . 9 (𝑢 ∪ {𝑋}) ∈ V
5049elpw 4567 . . . . . . . 8 ((𝑢 ∪ {𝑋}) ∈ 𝒫 𝑆 ↔ (𝑢 ∪ {𝑋}) ⊆ 𝑆)
5146, 50sylibr 234 . . . . . . 7 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ∈ 𝒫 𝑆)
5210adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑆 ∖ {𝑋}) ∈ Fin)
5352, 43ssfid 9212 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ∈ Fin)
54 neldifsnd 4757 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋}))
5543, 54ssneldd 3949 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ¬ 𝑋𝑢)
5619adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑋𝑆)
57 hashunsng 14357 . . . . . . . . . 10 (𝑋𝑆 → ((𝑢 ∈ Fin ∧ ¬ 𝑋𝑢) → (♯‘(𝑢 ∪ {𝑋})) = ((♯‘𝑢) + 1)))
5856, 57syl 17 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ((𝑢 ∈ Fin ∧ ¬ 𝑋𝑢) → (♯‘(𝑢 ∪ {𝑋})) = ((♯‘𝑢) + 1)))
5953, 55, 58mp2and 699 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (♯‘(𝑢 ∪ {𝑋})) = ((♯‘𝑢) + 1))
6041simplbda 499 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (♯‘𝑢) = (𝑀 − 1))
6160oveq1d 7402 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ((♯‘𝑢) + 1) = ((𝑀 − 1) + 1))
622nncnd 12202 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
63 ax-1cn 11126 . . . . . . . . . 10 1 ∈ ℂ
64 npcan 11430 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀)
6562, 63, 64sylancl 586 . . . . . . . . 9 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
6665adantr 480 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀)
6759, 61, 663eqtrd 2768 . . . . . . 7 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (♯‘(𝑢 ∪ {𝑋})) = 𝑀)
6835, 51, 67elrabd 3661 . . . . . 6 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
692nnnn0d 12503 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
701hashbcval 16973 . . . . . . . 8 ((𝑆 ∈ Fin ∧ 𝑀 ∈ ℕ0) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
718, 69, 70syl2anc 584 . . . . . . 7 (𝜑 → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
7271adantr 480 . . . . . 6 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
7368, 72eleqtrrd 2831 . . . . 5 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ∈ (𝑆𝐶𝑀))
7434, 73ffvelcdmd 7057 . . . 4 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝐾‘(𝑢 ∪ {𝑋})) ∈ 𝑅)
75 ramub1.h . . . 4 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
7674, 75fmptd 7086 . . 3 (𝜑𝐻:((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))⟶𝑅)
771, 4, 5, 6, 7, 10, 32, 76rami 16986 . 2 (𝜑 → ∃𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))
7869adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑀 ∈ ℕ0)
795adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑅 ∈ Fin)
80 ramub1.f . . . . . . . . . . . 12 (𝜑𝐹:𝑅⟶ℕ)
8180adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝐹:𝑅⟶ℕ)
82 simprll 778 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑑𝑅)
8381, 82ffvelcdmd 7057 . . . . . . . . . 10 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐹𝑑) ∈ ℕ)
84 nnm1nn0 12483 . . . . . . . . . 10 ((𝐹𝑑) ∈ ℕ → ((𝐹𝑑) − 1) ∈ ℕ0)
8583, 84syl 17 . . . . . . . . 9 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → ((𝐹𝑑) − 1) ∈ ℕ0)
8685adantr 480 . . . . . . . 8 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → ((𝐹𝑑) − 1) ∈ ℕ0)
8781ffvelcdmda 7056 . . . . . . . . 9 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → (𝐹𝑦) ∈ ℕ)
8887nnnn0d 12503 . . . . . . . 8 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → (𝐹𝑦) ∈ ℕ0)
8986, 88ifcld 4535 . . . . . . 7 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)) ∈ ℕ0)
90 eqid 2729 . . . . . . 7 (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦))) = (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))
9189, 90fmptd 7086 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦))):𝑅⟶ℕ0)
92 equequ2 2026 . . . . . . . . . . . 12 (𝑥 = 𝑑 → (𝑦 = 𝑥𝑦 = 𝑑))
93 fveq2 6858 . . . . . . . . . . . . 13 (𝑥 = 𝑑 → (𝐹𝑥) = (𝐹𝑑))
9493oveq1d 7402 . . . . . . . . . . . 12 (𝑥 = 𝑑 → ((𝐹𝑥) − 1) = ((𝐹𝑑) − 1))
9592, 94ifbieq1d 4513 . . . . . . . . . . 11 (𝑥 = 𝑑 → if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)) = if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))
9695mpteq2dv 5201 . . . . . . . . . 10 (𝑥 = 𝑑 → (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦))) = (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦))))
9796oveq2d 7403 . . . . . . . . 9 (𝑥 = 𝑑 → (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))) = (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))))
98 ramub1.g . . . . . . . . 9 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
99 ovex 7420 . . . . . . . . 9 (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))) ∈ V
10097, 98, 99fvmpt 6968 . . . . . . . 8 (𝑑𝑅 → (𝐺𝑑) = (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))))
10182, 100syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐺𝑑) = (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))))
1026adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝐺:𝑅⟶ℕ0)
103102, 82ffvelcdmd 7057 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐺𝑑) ∈ ℕ0)
104101, 103eqeltrrd 2829 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))) ∈ ℕ0)
105 simprlr 779 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋}))
106 simprrl 780 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐺𝑑) ≤ (♯‘𝑤))
107101, 106eqbrtrrd 5131 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))) ≤ (♯‘𝑤))
10833adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝐾:(𝑆𝐶𝑀)⟶𝑅)
1098adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑆 ∈ Fin)
110105elpwid 4572 . . . . . . . . 9 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑤 ⊆ (𝑆 ∖ {𝑋}))
111110difss2d 4102 . . . . . . . 8 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑤𝑆)
1121hashbcss 16975 . . . . . . . 8 ((𝑆 ∈ Fin ∧ 𝑤𝑆𝑀 ∈ ℕ0) → (𝑤𝐶𝑀) ⊆ (𝑆𝐶𝑀))
113109, 111, 78, 112syl3anc 1373 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑤𝐶𝑀) ⊆ (𝑆𝐶𝑀))
114108, 113fssresd 6727 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐾 ↾ (𝑤𝐶𝑀)):(𝑤𝐶𝑀)⟶𝑅)
1151, 78, 79, 91, 104, 105, 107, 114rami 16986 . . . . 5 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → ∃𝑐𝑅𝑣 ∈ 𝒫 𝑤(((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))
116 equequ1 2025 . . . . . . . . . . . . . 14 (𝑦 = 𝑐 → (𝑦 = 𝑑𝑐 = 𝑑))
117 fveq2 6858 . . . . . . . . . . . . . 14 (𝑦 = 𝑐 → (𝐹𝑦) = (𝐹𝑐))
118116, 117ifbieq2d 4515 . . . . . . . . . . . . 13 (𝑦 = 𝑐 → if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)) = if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)))
119 ovex 7420 . . . . . . . . . . . . . 14 ((𝐹𝑑) − 1) ∈ V
120 fvex 6871 . . . . . . . . . . . . . 14 (𝐹𝑐) ∈ V
121119, 120ifex 4539 . . . . . . . . . . . . 13 if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ∈ V
122118, 90, 121fvmpt 6968 . . . . . . . . . . . 12 (𝑐𝑅 → ((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) = if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)))
123122ad2antrl 728 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) = if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)))
124123breq1d 5117 . . . . . . . . . 10 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → (((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (♯‘𝑣) ↔ if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣)))
125124anbi1d 631 . . . . . . . . 9 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) ↔ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}))))
1262ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑀 ∈ ℕ)
1275ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑅 ∈ Fin)
12880ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝐹:𝑅⟶ℕ)
1296ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝐺:𝑅⟶ℕ0)
1307ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
1318ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑆 ∈ Fin)
13229ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
13333ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝐾:(𝑆𝐶𝑀)⟶𝑅)
13419ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑋𝑆)
13582adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑑𝑅)
136110adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑤 ⊆ (𝑆 ∖ {𝑋}))
137106adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝐺𝑑) ≤ (♯‘𝑤))
138 simprrr 781 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑}))
139138adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑}))
140 simprll 778 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑐𝑅)
141 simprlr 779 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑣 ∈ 𝒫 𝑤)
142141elpwid 4572 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑣𝑤)
143 simprrl 780 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣))
144 simprrr 781 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}))
145 cnvresima 6203 . . . . . . . . . . . . 13 ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}) = ((𝐾 “ {𝑐}) ∩ (𝑤𝐶𝑀))
146 inss1 4200 . . . . . . . . . . . . 13 ((𝐾 “ {𝑐}) ∩ (𝑤𝐶𝑀)) ⊆ (𝐾 “ {𝑐})
147145, 146eqsstri 3993 . . . . . . . . . . . 12 ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}) ⊆ (𝐾 “ {𝑐})
148144, 147sstrdi 3959 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝑣𝐶𝑀) ⊆ (𝐾 “ {𝑐}))
149126, 127, 128, 98, 129, 130, 1, 131, 132, 133, 134, 75, 135, 136, 137, 139, 140, 142, 143, 148ramub1lem1 16997 . . . . . . . . . 10 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
150149expr 456 . . . . . . . . 9 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
151125, 150sylbid 240 . . . . . . . 8 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
152151anassrs 467 . . . . . . 7 ((((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑐𝑅) ∧ 𝑣 ∈ 𝒫 𝑤) → ((((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
153152rexlimdva 3134 . . . . . 6 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑐𝑅) → (∃𝑣 ∈ 𝒫 𝑤(((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
154153reximdva 3146 . . . . 5 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (∃𝑐𝑅𝑣 ∈ 𝒫 𝑤(((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
155115, 154mpd 15 . . . 4 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
156155expr 456 . . 3 ((𝜑 ∧ (𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋}))) → (((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
157156rexlimdvva 3194 . 2 (𝜑 → (∃𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
15877, 157mpd 15 1 (𝜑 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  ifcif 4488  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  cmpt 5188  ccnv 5637  cres 5640  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  Fincfn 8918  cc 11066  1c1 11069   + caddc 11071  cle 11209  cmin 11405  cn 12186  0cn0 12442  chash 14295   Ramsey cram 16970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296  df-ram 16972
This theorem is referenced by:  ramub1  16999
  Copyright terms: Public domain W3C validator