MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1lem2 Structured version   Visualization version   GIF version

Theorem ramub1lem2 17065
Description: Lemma for ramub1 17066. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m (𝜑𝑀 ∈ ℕ)
ramub1.r (𝜑𝑅 ∈ Fin)
ramub1.f (𝜑𝐹:𝑅⟶ℕ)
ramub1.g 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
ramub1.1 (𝜑𝐺:𝑅⟶ℕ0)
ramub1.2 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
ramub1.3 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
ramub1.4 (𝜑𝑆 ∈ Fin)
ramub1.5 (𝜑 → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
ramub1.6 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
ramub1.x (𝜑𝑋𝑆)
ramub1.h 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
Assertion
Ref Expression
ramub1lem2 (𝜑 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
Distinct variable groups:   𝑥,𝑢,𝑐,𝑦,𝑧,𝐹   𝑎,𝑏,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧,𝑀   𝐺,𝑎,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧   𝑅,𝑐,𝑢,𝑥,𝑦,𝑧   𝜑,𝑐,𝑢,𝑥,𝑦,𝑧   𝑆,𝑎,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧   𝐶,𝑐,𝑢,𝑥,𝑦,𝑧   𝐻,𝑐,𝑢,𝑥,𝑦,𝑧   𝐾,𝑐,𝑢,𝑥,𝑦,𝑧   𝑋,𝑎,𝑐,𝑖,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑆(𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑏)   𝐻(𝑖,𝑎,𝑏)   𝐾(𝑖,𝑎,𝑏)   𝑋(𝑏)

Proof of Theorem ramub1lem2
Dummy variables 𝑑 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ramub1.3 . . 3 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 ramub1.m . . . 4 (𝜑𝑀 ∈ ℕ)
3 nnm1nn0 12567 . . . 4 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
42, 3syl 17 . . 3 (𝜑 → (𝑀 − 1) ∈ ℕ0)
5 ramub1.r . . 3 (𝜑𝑅 ∈ Fin)
6 ramub1.1 . . 3 (𝜑𝐺:𝑅⟶ℕ0)
7 ramub1.2 . . 3 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
8 ramub1.4 . . . 4 (𝜑𝑆 ∈ Fin)
9 diffi 9215 . . . 4 (𝑆 ∈ Fin → (𝑆 ∖ {𝑋}) ∈ Fin)
108, 9syl 17 . . 3 (𝜑 → (𝑆 ∖ {𝑋}) ∈ Fin)
117nn0red 12588 . . . . 5 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℝ)
1211leidd 11829 . . . 4 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ≤ ((𝑀 − 1) Ramsey 𝐺))
13 hashcl 14395 . . . . . . 7 ((𝑆 ∖ {𝑋}) ∈ Fin → (♯‘(𝑆 ∖ {𝑋})) ∈ ℕ0)
1410, 13syl 17 . . . . . 6 (𝜑 → (♯‘(𝑆 ∖ {𝑋})) ∈ ℕ0)
1514nn0cnd 12589 . . . . 5 (𝜑 → (♯‘(𝑆 ∖ {𝑋})) ∈ ℂ)
167nn0cnd 12589 . . . . 5 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℂ)
17 1cnd 11256 . . . . 5 (𝜑 → 1 ∈ ℂ)
18 undif1 4476 . . . . . . . 8 ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = (𝑆 ∪ {𝑋})
19 ramub1.x . . . . . . . . . 10 (𝜑𝑋𝑆)
2019snssd 4809 . . . . . . . . 9 (𝜑 → {𝑋} ⊆ 𝑆)
21 ssequn2 4189 . . . . . . . . 9 ({𝑋} ⊆ 𝑆 ↔ (𝑆 ∪ {𝑋}) = 𝑆)
2220, 21sylib 218 . . . . . . . 8 (𝜑 → (𝑆 ∪ {𝑋}) = 𝑆)
2318, 22eqtrid 2789 . . . . . . 7 (𝜑 → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆)
2423fveq2d 6910 . . . . . 6 (𝜑 → (♯‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = (♯‘𝑆))
25 neldifsnd 4793 . . . . . . 7 (𝜑 → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋}))
26 hashunsng 14431 . . . . . . . 8 (𝑋𝑆 → (((𝑆 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) → (♯‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑆 ∖ {𝑋})) + 1)))
2719, 26syl 17 . . . . . . 7 (𝜑 → (((𝑆 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) → (♯‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑆 ∖ {𝑋})) + 1)))
2810, 25, 27mp2and 699 . . . . . 6 (𝜑 → (♯‘((𝑆 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑆 ∖ {𝑋})) + 1))
29 ramub1.5 . . . . . 6 (𝜑 → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
3024, 28, 293eqtr3d 2785 . . . . 5 (𝜑 → ((♯‘(𝑆 ∖ {𝑋})) + 1) = (((𝑀 − 1) Ramsey 𝐺) + 1))
3115, 16, 17, 30addcan2ad 11467 . . . 4 (𝜑 → (♯‘(𝑆 ∖ {𝑋})) = ((𝑀 − 1) Ramsey 𝐺))
3212, 31breqtrrd 5171 . . 3 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ≤ (♯‘(𝑆 ∖ {𝑋})))
33 ramub1.6 . . . . . 6 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
3433adantr 480 . . . . 5 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝐾:(𝑆𝐶𝑀)⟶𝑅)
35 fveqeq2 6915 . . . . . . 7 (𝑥 = (𝑢 ∪ {𝑋}) → ((♯‘𝑥) = 𝑀 ↔ (♯‘(𝑢 ∪ {𝑋})) = 𝑀))
361hashbcval 17040 . . . . . . . . . . . . . . 15 (((𝑆 ∖ {𝑋}) ∈ Fin ∧ (𝑀 − 1) ∈ ℕ0) → ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) = {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (♯‘𝑥) = (𝑀 − 1)})
3710, 4, 36syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) = {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (♯‘𝑥) = (𝑀 − 1)})
3837eleq2d 2827 . . . . . . . . . . . . 13 (𝜑 → (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↔ 𝑢 ∈ {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (♯‘𝑥) = (𝑀 − 1)}))
39 fveqeq2 6915 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → ((♯‘𝑥) = (𝑀 − 1) ↔ (♯‘𝑢) = (𝑀 − 1)))
4039elrab 3692 . . . . . . . . . . . . 13 (𝑢 ∈ {𝑥 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∣ (♯‘𝑥) = (𝑀 − 1)} ↔ (𝑢 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∧ (♯‘𝑢) = (𝑀 − 1)))
4138, 40bitrdi 287 . . . . . . . . . . . 12 (𝜑 → (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↔ (𝑢 ∈ 𝒫 (𝑆 ∖ {𝑋}) ∧ (♯‘𝑢) = (𝑀 − 1))))
4241simprbda 498 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ∈ 𝒫 (𝑆 ∖ {𝑋}))
4342elpwid 4609 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ⊆ (𝑆 ∖ {𝑋}))
4443difss2d 4139 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢𝑆)
4520adantr 480 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → {𝑋} ⊆ 𝑆)
4644, 45unssd 4192 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ⊆ 𝑆)
47 vex 3484 . . . . . . . . . 10 𝑢 ∈ V
48 snex 5436 . . . . . . . . . 10 {𝑋} ∈ V
4947, 48unex 7764 . . . . . . . . 9 (𝑢 ∪ {𝑋}) ∈ V
5049elpw 4604 . . . . . . . 8 ((𝑢 ∪ {𝑋}) ∈ 𝒫 𝑆 ↔ (𝑢 ∪ {𝑋}) ⊆ 𝑆)
5146, 50sylibr 234 . . . . . . 7 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ∈ 𝒫 𝑆)
5210adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑆 ∖ {𝑋}) ∈ Fin)
5352, 43ssfid 9301 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑢 ∈ Fin)
54 neldifsnd 4793 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋}))
5543, 54ssneldd 3986 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ¬ 𝑋𝑢)
5619adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → 𝑋𝑆)
57 hashunsng 14431 . . . . . . . . . 10 (𝑋𝑆 → ((𝑢 ∈ Fin ∧ ¬ 𝑋𝑢) → (♯‘(𝑢 ∪ {𝑋})) = ((♯‘𝑢) + 1)))
5856, 57syl 17 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ((𝑢 ∈ Fin ∧ ¬ 𝑋𝑢) → (♯‘(𝑢 ∪ {𝑋})) = ((♯‘𝑢) + 1)))
5953, 55, 58mp2and 699 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (♯‘(𝑢 ∪ {𝑋})) = ((♯‘𝑢) + 1))
6041simplbda 499 . . . . . . . . 9 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (♯‘𝑢) = (𝑀 − 1))
6160oveq1d 7446 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ((♯‘𝑢) + 1) = ((𝑀 − 1) + 1))
622nncnd 12282 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
63 ax-1cn 11213 . . . . . . . . . 10 1 ∈ ℂ
64 npcan 11517 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀)
6562, 63, 64sylancl 586 . . . . . . . . 9 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
6665adantr 480 . . . . . . . 8 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀)
6759, 61, 663eqtrd 2781 . . . . . . 7 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (♯‘(𝑢 ∪ {𝑋})) = 𝑀)
6835, 51, 67elrabd 3694 . . . . . 6 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
692nnnn0d 12587 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
701hashbcval 17040 . . . . . . . 8 ((𝑆 ∈ Fin ∧ 𝑀 ∈ ℕ0) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
718, 69, 70syl2anc 584 . . . . . . 7 (𝜑 → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
7271adantr 480 . . . . . 6 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
7368, 72eleqtrrd 2844 . . . . 5 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝑢 ∪ {𝑋}) ∈ (𝑆𝐶𝑀))
7434, 73ffvelcdmd 7105 . . . 4 ((𝜑𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))) → (𝐾‘(𝑢 ∪ {𝑋})) ∈ 𝑅)
75 ramub1.h . . . 4 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
7674, 75fmptd 7134 . . 3 (𝜑𝐻:((𝑆 ∖ {𝑋})𝐶(𝑀 − 1))⟶𝑅)
771, 4, 5, 6, 7, 10, 32, 76rami 17053 . 2 (𝜑 → ∃𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))
7869adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑀 ∈ ℕ0)
795adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑅 ∈ Fin)
80 ramub1.f . . . . . . . . . . . 12 (𝜑𝐹:𝑅⟶ℕ)
8180adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝐹:𝑅⟶ℕ)
82 simprll 779 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑑𝑅)
8381, 82ffvelcdmd 7105 . . . . . . . . . 10 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐹𝑑) ∈ ℕ)
84 nnm1nn0 12567 . . . . . . . . . 10 ((𝐹𝑑) ∈ ℕ → ((𝐹𝑑) − 1) ∈ ℕ0)
8583, 84syl 17 . . . . . . . . 9 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → ((𝐹𝑑) − 1) ∈ ℕ0)
8685adantr 480 . . . . . . . 8 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → ((𝐹𝑑) − 1) ∈ ℕ0)
8781ffvelcdmda 7104 . . . . . . . . 9 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → (𝐹𝑦) ∈ ℕ)
8887nnnn0d 12587 . . . . . . . 8 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → (𝐹𝑦) ∈ ℕ0)
8986, 88ifcld 4572 . . . . . . 7 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑦𝑅) → if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)) ∈ ℕ0)
90 eqid 2737 . . . . . . 7 (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦))) = (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))
9189, 90fmptd 7134 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦))):𝑅⟶ℕ0)
92 equequ2 2025 . . . . . . . . . . . 12 (𝑥 = 𝑑 → (𝑦 = 𝑥𝑦 = 𝑑))
93 fveq2 6906 . . . . . . . . . . . . 13 (𝑥 = 𝑑 → (𝐹𝑥) = (𝐹𝑑))
9493oveq1d 7446 . . . . . . . . . . . 12 (𝑥 = 𝑑 → ((𝐹𝑥) − 1) = ((𝐹𝑑) − 1))
9592, 94ifbieq1d 4550 . . . . . . . . . . 11 (𝑥 = 𝑑 → if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)) = if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))
9695mpteq2dv 5244 . . . . . . . . . 10 (𝑥 = 𝑑 → (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦))) = (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦))))
9796oveq2d 7447 . . . . . . . . 9 (𝑥 = 𝑑 → (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))) = (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))))
98 ramub1.g . . . . . . . . 9 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
99 ovex 7464 . . . . . . . . 9 (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))) ∈ V
10097, 98, 99fvmpt 7016 . . . . . . . 8 (𝑑𝑅 → (𝐺𝑑) = (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))))
10182, 100syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐺𝑑) = (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))))
1026adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝐺:𝑅⟶ℕ0)
103102, 82ffvelcdmd 7105 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐺𝑑) ∈ ℕ0)
104101, 103eqeltrrd 2842 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))) ∈ ℕ0)
105 simprlr 780 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋}))
106 simprrl 781 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐺𝑑) ≤ (♯‘𝑤))
107101, 106eqbrtrrd 5167 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))) ≤ (♯‘𝑤))
10833adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝐾:(𝑆𝐶𝑀)⟶𝑅)
1098adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑆 ∈ Fin)
110105elpwid 4609 . . . . . . . . 9 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑤 ⊆ (𝑆 ∖ {𝑋}))
111110difss2d 4139 . . . . . . . 8 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → 𝑤𝑆)
1121hashbcss 17042 . . . . . . . 8 ((𝑆 ∈ Fin ∧ 𝑤𝑆𝑀 ∈ ℕ0) → (𝑤𝐶𝑀) ⊆ (𝑆𝐶𝑀))
113109, 111, 78, 112syl3anc 1373 . . . . . . 7 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑤𝐶𝑀) ⊆ (𝑆𝐶𝑀))
114108, 113fssresd 6775 . . . . . 6 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝐾 ↾ (𝑤𝐶𝑀)):(𝑤𝐶𝑀)⟶𝑅)
1151, 78, 79, 91, 104, 105, 107, 114rami 17053 . . . . 5 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → ∃𝑐𝑅𝑣 ∈ 𝒫 𝑤(((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))
116 equequ1 2024 . . . . . . . . . . . . . 14 (𝑦 = 𝑐 → (𝑦 = 𝑑𝑐 = 𝑑))
117 fveq2 6906 . . . . . . . . . . . . . 14 (𝑦 = 𝑐 → (𝐹𝑦) = (𝐹𝑐))
118116, 117ifbieq2d 4552 . . . . . . . . . . . . 13 (𝑦 = 𝑐 → if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)) = if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)))
119 ovex 7464 . . . . . . . . . . . . . 14 ((𝐹𝑑) − 1) ∈ V
120 fvex 6919 . . . . . . . . . . . . . 14 (𝐹𝑐) ∈ V
121119, 120ifex 4576 . . . . . . . . . . . . 13 if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ∈ V
122118, 90, 121fvmpt 7016 . . . . . . . . . . . 12 (𝑐𝑅 → ((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) = if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)))
123122ad2antrl 728 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) = if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)))
124123breq1d 5153 . . . . . . . . . 10 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → (((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (♯‘𝑣) ↔ if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣)))
125124anbi1d 631 . . . . . . . . 9 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) ↔ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}))))
1262ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑀 ∈ ℕ)
1275ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑅 ∈ Fin)
12880ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝐹:𝑅⟶ℕ)
1296ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝐺:𝑅⟶ℕ0)
1307ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
1318ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑆 ∈ Fin)
13229ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
13333ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝐾:(𝑆𝐶𝑀)⟶𝑅)
13419ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑋𝑆)
13582adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑑𝑅)
136110adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑤 ⊆ (𝑆 ∖ {𝑋}))
137106adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝐺𝑑) ≤ (♯‘𝑤))
138 simprrr 782 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑}))
139138adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑}))
140 simprll 779 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑐𝑅)
141 simprlr 780 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑣 ∈ 𝒫 𝑤)
142141elpwid 4609 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → 𝑣𝑤)
143 simprrl 781 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣))
144 simprrr 782 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}))
145 cnvresima 6250 . . . . . . . . . . . . 13 ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}) = ((𝐾 “ {𝑐}) ∩ (𝑤𝐶𝑀))
146 inss1 4237 . . . . . . . . . . . . 13 ((𝐾 “ {𝑐}) ∩ (𝑤𝐶𝑀)) ⊆ (𝐾 “ {𝑐})
147145, 146eqsstri 4030 . . . . . . . . . . . 12 ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐}) ⊆ (𝐾 “ {𝑐})
148144, 147sstrdi 3996 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → (𝑣𝐶𝑀) ⊆ (𝐾 “ {𝑐}))
149126, 127, 128, 98, 129, 130, 1, 131, 132, 133, 134, 75, 135, 136, 137, 139, 140, 142, 143, 148ramub1lem1 17064 . . . . . . . . . 10 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ ((𝑐𝑅𝑣 ∈ 𝒫 𝑤) ∧ (if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
150149expr 456 . . . . . . . . 9 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((if(𝑐 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑐)) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
151125, 150sylbid 240 . . . . . . . 8 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ (𝑐𝑅𝑣 ∈ 𝒫 𝑤)) → ((((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
152151anassrs 467 . . . . . . 7 ((((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑐𝑅) ∧ 𝑣 ∈ 𝒫 𝑤) → ((((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
153152rexlimdva 3155 . . . . . 6 (((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) ∧ 𝑐𝑅) → (∃𝑣 ∈ 𝒫 𝑤(((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
154153reximdva 3168 . . . . 5 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → (∃𝑐𝑅𝑣 ∈ 𝒫 𝑤(((𝑦𝑅 ↦ if(𝑦 = 𝑑, ((𝐹𝑑) − 1), (𝐹𝑦)))‘𝑐) ≤ (♯‘𝑣) ∧ (𝑣𝐶𝑀) ⊆ ((𝐾 ↾ (𝑤𝐶𝑀)) “ {𝑐})) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
155115, 154mpd 15 . . . 4 ((𝜑 ∧ ((𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})) ∧ ((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})))) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
156155expr 456 . . 3 ((𝜑 ∧ (𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋}))) → (((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
157156rexlimdvva 3213 . 2 (𝜑 → (∃𝑑𝑅𝑤 ∈ 𝒫 (𝑆 ∖ {𝑋})((𝐺𝑑) ≤ (♯‘𝑤) ∧ (𝑤𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝑑})) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐}))))
15877, 157mpd 15 1 (𝜑 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑆((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3070  {crab 3436  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  ifcif 4525  𝒫 cpw 4600  {csn 4626   class class class wbr 5143  cmpt 5225  ccnv 5684  cres 5687  cima 5688  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  Fincfn 8985  cc 11153  1c1 11156   + caddc 11158  cle 11296  cmin 11492  cn 12266  0cn0 12526  chash 14369   Ramsey cram 17037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370  df-ram 17039
This theorem is referenced by:  ramub1  17066
  Copyright terms: Public domain W3C validator