Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop2lem Structured version   Visualization version   GIF version

Theorem neibastop2lem 36342
Description: Lemma for neibastop2 36343. (Contributed by Jeff Hankins, 12-Sep-2009.)
Hypotheses
Ref Expression
neibastop1.1 (𝜑𝑋𝑉)
neibastop1.2 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
neibastop1.3 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
neibastop1.4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
neibastop1.5 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
neibastop1.6 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
neibastop2.p (𝜑𝑃𝑋)
neibastop2.n (𝜑𝑁𝑋)
neibastop2.f (𝜑𝑈 ∈ (𝐹𝑃))
neibastop2.u (𝜑𝑈𝑁)
neibastop2.g 𝐺 = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)
neibastop2.s 𝑆 = {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}
Assertion
Ref Expression
neibastop2lem (𝜑 → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
Distinct variable groups:   𝑡,𝑓,𝑣,𝑦,𝑧,𝐺   𝑣,𝑢,𝑥,𝑦,𝑧,𝐽   𝑓,𝑜,𝑢,𝑤,𝑥,𝑃,𝑡,𝑣,𝑦,𝑧   𝑓,𝑁,𝑜,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑓,𝑜,𝑡,𝑢,𝑣,𝑥,𝑦   𝑈,𝑓,𝑥,𝑦,𝑧   𝑓,𝑎,𝑜,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑜,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝑋,𝑎,𝑓,𝑜,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑢,𝑎)   𝑃(𝑎)   𝑆(𝑧,𝑤,𝑎)   𝑈(𝑤,𝑣,𝑢,𝑡,𝑜,𝑎)   𝐺(𝑥,𝑤,𝑢,𝑜,𝑎)   𝐽(𝑤,𝑡,𝑓,𝑜,𝑎)   𝑁(𝑎)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑜,𝑎)

Proof of Theorem neibastop2lem
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neibastop2.s . . . . 5 𝑆 = {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}
2 ssrab2 4089 . . . . 5 {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅} ⊆ 𝑋
31, 2eqsstri 4029 . . . 4 𝑆𝑋
4 neibastop1.1 . . . . 5 (𝜑𝑋𝑉)
5 elpw2g 5338 . . . . 5 (𝑋𝑉 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
64, 5syl 17 . . . 4 (𝜑 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
73, 6mpbiri 258 . . 3 (𝜑𝑆 ∈ 𝒫 𝑋)
8 fveq2 6906 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
98ineq1d 4226 . . . . . . . 8 (𝑦 = 𝑥 → ((𝐹𝑦) ∩ 𝒫 𝑓) = ((𝐹𝑥) ∩ 𝒫 𝑓))
109neeq1d 2997 . . . . . . 7 (𝑦 = 𝑥 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅))
1110rexbidv 3176 . . . . . 6 (𝑦 = 𝑥 → (∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅))
1211, 1elrab2 3697 . . . . 5 (𝑥𝑆 ↔ (𝑥𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅))
13 frfnom 8473 . . . . . . . . . 10 (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω) Fn ω
14 neibastop2.g . . . . . . . . . . 11 𝐺 = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)
1514fneq1i 6665 . . . . . . . . . 10 (𝐺 Fn ω ↔ (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω) Fn ω)
1613, 15mpbir 231 . . . . . . . . 9 𝐺 Fn ω
17 fnunirn 7273 . . . . . . . . 9 (𝐺 Fn ω → (𝑓 ran 𝐺 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘)))
1816, 17ax-mp 5 . . . . . . . 8 (𝑓 ran 𝐺 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘))
19 n0 4358 . . . . . . . . . 10 (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))
20 inss1 4244 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∩ 𝒫 𝑓) ⊆ (𝐹𝑥)
2120sseli 3990 . . . . . . . . . . . . . . 15 (𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓) → 𝑣 ∈ (𝐹𝑥))
22 neibastop1.6 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
2322anassrs 467 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑣 ∈ (𝐹𝑥)) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
2421, 23sylan2 593 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
2524adantrl 716 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
26 simprl 771 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑡 ∈ (𝐹𝑥))
27 fvssunirn 6939 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹𝑥) ⊆ ran 𝐹
28 neibastop1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
2928frnd 6744 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ran 𝐹 ⊆ (𝒫 𝒫 𝑋 ∖ {∅}))
3029difss2d 4148 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ran 𝐹 ⊆ 𝒫 𝒫 𝑋)
31 sspwuni 5104 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ran 𝐹 ⊆ 𝒫 𝒫 𝑋 ran 𝐹 ⊆ 𝒫 𝑋)
3230, 31sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 ran 𝐹 ⊆ 𝒫 𝑋)
3332ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ran 𝐹 ⊆ 𝒫 𝑋)
3427, 33sstrid 4006 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐹𝑥) ⊆ 𝒫 𝑋)
3534sselda 3994 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) → 𝑡 ∈ 𝒫 𝑋)
3635elpwid 4613 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) → 𝑡𝑋)
3736sselda 3994 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ 𝑦𝑡) → 𝑦𝑋)
3837adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑦𝑋)
39 simprlr 780 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑓 ∈ (𝐺𝑘))
40 rspe 3246 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝑋𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)) → ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))
4140ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))
42 eliun 4999 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑧))
43 pweq 4618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑓 → 𝒫 𝑧 = 𝒫 𝑓)
4443ineq2d 4227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑓 → ((𝐹𝑥) ∩ 𝒫 𝑧) = ((𝐹𝑥) ∩ 𝒫 𝑓))
4544eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 𝑓 → (𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)))
4645rexbidv 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑓 → (∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)))
4742, 46bitrid 283 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑓 → (𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)))
4847rspcev 3621 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ (𝐺𝑘) ∧ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)) → ∃𝑧 ∈ (𝐺𝑘)𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
4939, 41, 48syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ∃𝑧 ∈ (𝐺𝑘)𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
50 eliun 4999 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑧 ∈ (𝐺𝑘)𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
5149, 50sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑣 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
52 simpll 767 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝜑)
53 simprll 779 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑘 ∈ ω)
54 fvssunirn 6939 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐺𝑘) ⊆ ran 𝐺
55 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑛 = ∅ → (𝐺𝑛) = (𝐺‘∅))
5614fveq1i 6907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐺‘∅) = ((rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)‘∅)
57 snex 5441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 {𝑈} ∈ V
58 fr0g 8474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ({𝑈} ∈ V → ((rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)‘∅) = {𝑈})
5957, 58ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)‘∅) = {𝑈}
6056, 59eqtri 2762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐺‘∅) = {𝑈}
6155, 60eqtrdi 2790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 = ∅ → (𝐺𝑛) = {𝑈})
6261sseq1d 4026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 = ∅ → ((𝐺𝑛) ⊆ 𝒫 𝑈 ↔ {𝑈} ⊆ 𝒫 𝑈))
63 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
6463sseq1d 4026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 = 𝑘 → ((𝐺𝑛) ⊆ 𝒫 𝑈 ↔ (𝐺𝑘) ⊆ 𝒫 𝑈))
65 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 = suc 𝑘 → (𝐺𝑛) = (𝐺‘suc 𝑘))
6665sseq1d 4026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 = suc 𝑘 → ((𝐺𝑛) ⊆ 𝒫 𝑈 ↔ (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈))
67 neibastop2.f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑈 ∈ (𝐹𝑃))
68 pwidg 4624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑈 ∈ (𝐹𝑃) → 𝑈 ∈ 𝒫 𝑈)
6967, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝑈 ∈ 𝒫 𝑈)
7069snssd 4813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → {𝑈} ⊆ 𝒫 𝑈)
71 simprl 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑘 ∈ ω)
7267adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑈 ∈ (𝐹𝑃))
7372pwexd 5384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝒫 𝑈 ∈ V)
74 inss2 4245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑧
75 elpwi 4611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑧 ∈ 𝒫 𝑈𝑧𝑈)
7675adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑𝑧 ∈ 𝒫 𝑈) → 𝑧𝑈)
7776sspwd 4617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑧 ∈ 𝒫 𝑈) → 𝒫 𝑧 ⊆ 𝒫 𝑈)
7874, 77sstrid 4006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑𝑧 ∈ 𝒫 𝑈) → ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
7978ralrimivw 3147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑𝑧 ∈ 𝒫 𝑈) → ∀𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
80 iunss 5049 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ( 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 ↔ ∀𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8179, 80sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑𝑧 ∈ 𝒫 𝑈) → 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8281ralrimiva 3143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜑 → ∀𝑧 ∈ 𝒫 𝑈 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
83 ssralv 4063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐺𝑘) ⊆ 𝒫 𝑈 → (∀𝑧 ∈ 𝒫 𝑈 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 → ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈))
8483adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈) → (∀𝑧 ∈ 𝒫 𝑈 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 → ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈))
8582, 84mpan9 506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
86 iunss 5049 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ( 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 ↔ ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8785, 86sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8873, 87ssexd 5329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ∈ V)
89 iuneq1 5012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 = 𝑎 𝑧𝑦 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) = 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
90 iuneq1 5012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 = (𝐺𝑘) → 𝑧𝑦 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
9114, 89, 90frsucmpt2 8478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ∈ V) → (𝐺‘suc 𝑘) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
9271, 88, 91syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → (𝐺‘suc 𝑘) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
9392, 87eqsstrd 4033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈)
9493expr 456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑘 ∈ ω) → ((𝐺𝑘) ⊆ 𝒫 𝑈 → (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈))
9594expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 ∈ ω → (𝜑 → ((𝐺𝑘) ⊆ 𝒫 𝑈 → (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈)))
9662, 64, 66, 70, 95finds2 7920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 ∈ ω → (𝜑 → (𝐺𝑛) ⊆ 𝒫 𝑈))
97 fvex 6919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐺𝑛) ∈ V
9897elpw 4608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐺𝑛) ∈ 𝒫 𝒫 𝑈 ↔ (𝐺𝑛) ⊆ 𝒫 𝑈)
9996, 98imbitrrdi 252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 ∈ ω → (𝜑 → (𝐺𝑛) ∈ 𝒫 𝒫 𝑈))
10099com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑛 ∈ ω → (𝐺𝑛) ∈ 𝒫 𝒫 𝑈))
101100ralrimiv 3142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ∀𝑛 ∈ ω (𝐺𝑛) ∈ 𝒫 𝒫 𝑈)
102 ffnfv 7138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐺:ω⟶𝒫 𝒫 𝑈 ↔ (𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺𝑛) ∈ 𝒫 𝒫 𝑈))
10316, 102mpbiran 709 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐺:ω⟶𝒫 𝒫 𝑈 ↔ ∀𝑛 ∈ ω (𝐺𝑛) ∈ 𝒫 𝒫 𝑈)
104101, 103sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐺:ω⟶𝒫 𝒫 𝑈)
105104frnd 6744 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ran 𝐺 ⊆ 𝒫 𝒫 𝑈)
106 sspwuni 5104 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ran 𝐺 ⊆ 𝒫 𝒫 𝑈 ran 𝐺 ⊆ 𝒫 𝑈)
107105, 106sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 ran 𝐺 ⊆ 𝒫 𝑈)
108107ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ran 𝐺 ⊆ 𝒫 𝑈)
10954, 108sstrid 4006 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐺𝑘) ⊆ 𝒫 𝑈)
11052, 53, 109, 92syl12anc 837 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐺‘suc 𝑘) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
11151, 110eleqtrrd 2841 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑣 ∈ (𝐺‘suc 𝑘))
112 peano2 7912 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
11353, 112syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → suc 𝑘 ∈ ω)
114 fnfvelrn 7099 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 Fn ω ∧ suc 𝑘 ∈ ω) → (𝐺‘suc 𝑘) ∈ ran 𝐺)
11516, 113, 114sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐺‘suc 𝑘) ∈ ran 𝐺)
116 elunii 4916 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 ∈ (𝐺‘suc 𝑘) ∧ (𝐺‘suc 𝑘) ∈ ran 𝐺) → 𝑣 ran 𝐺)
117111, 115, 116syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑣 ran 𝐺)
118117ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑣 ran 𝐺)
119 simprr 773 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
120 pweq 4618 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑣 → 𝒫 𝑓 = 𝒫 𝑣)
121120ineq2d 4227 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑣 → ((𝐹𝑦) ∩ 𝒫 𝑓) = ((𝐹𝑦) ∩ 𝒫 𝑣))
122121neeq1d 2997 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑣 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅))
123122rspcev 3621 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ran 𝐺 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅) → ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)
124118, 119, 123syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)
1251reqabi 3456 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑆 ↔ (𝑦𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
12638, 124, 125sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑦𝑆)
127126expr 456 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ 𝑦𝑡) → (((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅ → 𝑦𝑆))
128127ralimdva 3164 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) → (∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅ → ∀𝑦𝑡 𝑦𝑆))
129128impr 454 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ∀𝑦𝑡 𝑦𝑆)
130 dfss3 3983 . . . . . . . . . . . . . . . 16 (𝑡𝑆 ↔ ∀𝑦𝑡 𝑦𝑆)
131129, 130sylibr 234 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑡𝑆)
132 velpw 4609 . . . . . . . . . . . . . . 15 (𝑡 ∈ 𝒫 𝑆𝑡𝑆)
133131, 132sylibr 234 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑡 ∈ 𝒫 𝑆)
134 inelcm 4470 . . . . . . . . . . . . . 14 ((𝑡 ∈ (𝐹𝑥) ∧ 𝑡 ∈ 𝒫 𝑆) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
13526, 133, 134syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
13625, 135rexlimddv 3158 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
137136expr 456 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘))) → (𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
138137exlimdv 1930 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘))) → (∃𝑣 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
13919, 138biimtrid 242 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘))) → (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
140139rexlimdvaa 3153 . . . . . . . 8 ((𝜑𝑥𝑋) → (∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘) → (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)))
14118, 140biimtrid 242 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑓 ran 𝐺 → (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)))
142141rexlimdv 3150 . . . . . 6 ((𝜑𝑥𝑋) → (∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
143142expimpd 453 . . . . 5 (𝜑 → ((𝑥𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
14412, 143biimtrid 242 . . . 4 (𝜑 → (𝑥𝑆 → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
145144ralrimiv 3142 . . 3 (𝜑 → ∀𝑥𝑆 ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
146 pweq 4618 . . . . . . 7 (𝑜 = 𝑆 → 𝒫 𝑜 = 𝒫 𝑆)
147146ineq2d 4227 . . . . . 6 (𝑜 = 𝑆 → ((𝐹𝑥) ∩ 𝒫 𝑜) = ((𝐹𝑥) ∩ 𝒫 𝑆))
148147neeq1d 2997 . . . . 5 (𝑜 = 𝑆 → (((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
149148raleqbi1dv 3335 . . . 4 (𝑜 = 𝑆 → (∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ∀𝑥𝑆 ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
150 neibastop1.4 . . . 4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
151149, 150elrab2 3697 . . 3 (𝑆𝐽 ↔ (𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑆 ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
1527, 145, 151sylanbrc 583 . 2 (𝜑𝑆𝐽)
153 neibastop2.p . . 3 (𝜑𝑃𝑋)
154 snidg 4664 . . . . . 6 (𝑈 ∈ (𝐹𝑃) → 𝑈 ∈ {𝑈})
15567, 154syl 17 . . . . 5 (𝜑𝑈 ∈ {𝑈})
156 peano1 7910 . . . . . . 7 ∅ ∈ ω
157 fnfvelrn 7099 . . . . . . 7 ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺)
15816, 156, 157mp2an 692 . . . . . 6 (𝐺‘∅) ∈ ran 𝐺
15960, 158eqeltrri 2835 . . . . 5 {𝑈} ∈ ran 𝐺
160 elunii 4916 . . . . 5 ((𝑈 ∈ {𝑈} ∧ {𝑈} ∈ ran 𝐺) → 𝑈 ran 𝐺)
161155, 159, 160sylancl 586 . . . 4 (𝜑𝑈 ran 𝐺)
162 inelcm 4470 . . . . 5 ((𝑈 ∈ (𝐹𝑃) ∧ 𝑈 ∈ 𝒫 𝑈) → ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅)
16367, 69, 162syl2anc 584 . . . 4 (𝜑 → ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅)
164 pweq 4618 . . . . . . 7 (𝑓 = 𝑈 → 𝒫 𝑓 = 𝒫 𝑈)
165164ineq2d 4227 . . . . . 6 (𝑓 = 𝑈 → ((𝐹𝑃) ∩ 𝒫 𝑓) = ((𝐹𝑃) ∩ 𝒫 𝑈))
166165neeq1d 2997 . . . . 5 (𝑓 = 𝑈 → (((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅))
167166rspcev 3621 . . . 4 ((𝑈 ran 𝐺 ∧ ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅) → ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅)
168161, 163, 167syl2anc 584 . . 3 (𝜑 → ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅)
169 fveq2 6906 . . . . . . 7 (𝑦 = 𝑃 → (𝐹𝑦) = (𝐹𝑃))
170169ineq1d 4226 . . . . . 6 (𝑦 = 𝑃 → ((𝐹𝑦) ∩ 𝒫 𝑓) = ((𝐹𝑃) ∩ 𝒫 𝑓))
171170neeq1d 2997 . . . . 5 (𝑦 = 𝑃 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅))
172171rexbidv 3176 . . . 4 (𝑦 = 𝑃 → (∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅))
173172, 1elrab2 3697 . . 3 (𝑃𝑆 ↔ (𝑃𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅))
174153, 168, 173sylanbrc 583 . 2 (𝜑𝑃𝑆)
175 eluni2 4915 . . . . . . 7 (𝑓 ran 𝐺 ↔ ∃𝑧 ∈ ran 𝐺 𝑓𝑧)
176 eleq2 2827 . . . . . . . . . 10 (𝑧 = (𝐺𝑘) → (𝑓𝑧𝑓 ∈ (𝐺𝑘)))
177176rexrn 7106 . . . . . . . . 9 (𝐺 Fn ω → (∃𝑧 ∈ ran 𝐺 𝑓𝑧 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘)))
17816, 177ax-mp 5 . . . . . . . 8 (∃𝑧 ∈ ran 𝐺 𝑓𝑧 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘))
179104adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝑋) → 𝐺:ω⟶𝒫 𝒫 𝑈)
180179ffvelcdmda 7103 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ∈ 𝒫 𝒫 𝑈)
181180elpwid 4613 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ⊆ 𝒫 𝑈)
182181sselda 3994 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → 𝑓 ∈ 𝒫 𝑈)
183182adantrr 717 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑓 ∈ 𝒫 𝑈)
184183elpwid 4613 . . . . . . . . . . . 12 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑓𝑈)
185 neibastop2.u . . . . . . . . . . . . 13 (𝜑𝑈𝑁)
186185ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑈𝑁)
187184, 186sstrd 4005 . . . . . . . . . . 11 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑓𝑁)
188 n0 4358 . . . . . . . . . . . . 13 (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓))
189 elin 3978 . . . . . . . . . . . . . . 15 (𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓) ↔ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))
190 simprrr 782 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑣 ∈ 𝒫 𝑓)
191190elpwid 4613 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑣𝑓)
192 simpllr 776 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑦𝑋)
193 neibastop1.5 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
194193expr 456 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣))
195194ralrimiva 3143 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝑋 (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣))
196195ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → ∀𝑥𝑋 (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣))
197 simprrl 781 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑣 ∈ (𝐹𝑦))
198 fveq2 6906 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
199198eleq2d 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝑣 ∈ (𝐹𝑥) ↔ 𝑣 ∈ (𝐹𝑦)))
200 elequ1 2112 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝑥𝑣𝑦𝑣))
201199, 200imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → ((𝑣 ∈ (𝐹𝑥) → 𝑥𝑣) ↔ (𝑣 ∈ (𝐹𝑦) → 𝑦𝑣)))
202201rspcv 3617 . . . . . . . . . . . . . . . . . 18 (𝑦𝑋 → (∀𝑥𝑋 (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣) → (𝑣 ∈ (𝐹𝑦) → 𝑦𝑣)))
203192, 196, 197, 202syl3c 66 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑦𝑣)
204191, 203sseldd 3995 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑦𝑓)
205204expr 456 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → ((𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓) → 𝑦𝑓))
206189, 205biimtrid 242 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → (𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓) → 𝑦𝑓))
207206exlimdv 1930 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → (∃𝑣 𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓) → 𝑦𝑓))
208188, 207biimtrid 242 . . . . . . . . . . . 12 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑓))
209208impr 454 . . . . . . . . . . 11 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑦𝑓)
210187, 209sseldd 3995 . . . . . . . . . 10 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑦𝑁)
211210exp32 420 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) → (𝑓 ∈ (𝐺𝑘) → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
212211rexlimdva 3152 . . . . . . . 8 ((𝜑𝑦𝑋) → (∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘) → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
213178, 212biimtrid 242 . . . . . . 7 ((𝜑𝑦𝑋) → (∃𝑧 ∈ ran 𝐺 𝑓𝑧 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
214175, 213biimtrid 242 . . . . . 6 ((𝜑𝑦𝑋) → (𝑓 ran 𝐺 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
215214rexlimdv 3150 . . . . 5 ((𝜑𝑦𝑋) → (∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁))
2162153impia 1116 . . . 4 ((𝜑𝑦𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅) → 𝑦𝑁)
217216rabssdv 4084 . . 3 (𝜑 → {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅} ⊆ 𝑁)
2181, 217eqsstrid 4043 . 2 (𝜑𝑆𝑁)
219 eleq2 2827 . . . 4 (𝑢 = 𝑆 → (𝑃𝑢𝑃𝑆))
220 sseq1 4020 . . . 4 (𝑢 = 𝑆 → (𝑢𝑁𝑆𝑁))
221219, 220anbi12d 632 . . 3 (𝑢 = 𝑆 → ((𝑃𝑢𝑢𝑁) ↔ (𝑃𝑆𝑆𝑁)))
222221rspcev 3621 . 2 ((𝑆𝐽 ∧ (𝑃𝑆𝑆𝑁)) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
223152, 174, 218, 222syl12anc 837 1 (𝜑 → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  cdif 3959  cin 3961  wss 3962  c0 4338  𝒫 cpw 4604  {csn 4630   cuni 4911   ciun 4995  cmpt 5230  ran crn 5689  cres 5690  suc csuc 6387   Fn wfn 6557  wf 6558  cfv 6562  ωcom 7886  reccrdg 8447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448
This theorem is referenced by:  neibastop2  36343
  Copyright terms: Public domain W3C validator