Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop2lem Structured version   Visualization version   GIF version

Theorem neibastop2lem 36400
Description: Lemma for neibastop2 36401. (Contributed by Jeff Hankins, 12-Sep-2009.)
Hypotheses
Ref Expression
neibastop1.1 (𝜑𝑋𝑉)
neibastop1.2 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
neibastop1.3 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
neibastop1.4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
neibastop1.5 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
neibastop1.6 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
neibastop2.p (𝜑𝑃𝑋)
neibastop2.n (𝜑𝑁𝑋)
neibastop2.f (𝜑𝑈 ∈ (𝐹𝑃))
neibastop2.u (𝜑𝑈𝑁)
neibastop2.g 𝐺 = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)
neibastop2.s 𝑆 = {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}
Assertion
Ref Expression
neibastop2lem (𝜑 → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
Distinct variable groups:   𝑡,𝑓,𝑣,𝑦,𝑧,𝐺   𝑣,𝑢,𝑥,𝑦,𝑧,𝐽   𝑓,𝑜,𝑢,𝑤,𝑥,𝑃,𝑡,𝑣,𝑦,𝑧   𝑓,𝑁,𝑜,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑓,𝑜,𝑡,𝑢,𝑣,𝑥,𝑦   𝑈,𝑓,𝑥,𝑦,𝑧   𝑓,𝑎,𝑜,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑜,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝑋,𝑎,𝑓,𝑜,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑢,𝑎)   𝑃(𝑎)   𝑆(𝑧,𝑤,𝑎)   𝑈(𝑤,𝑣,𝑢,𝑡,𝑜,𝑎)   𝐺(𝑥,𝑤,𝑢,𝑜,𝑎)   𝐽(𝑤,𝑡,𝑓,𝑜,𝑎)   𝑁(𝑎)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑜,𝑎)

Proof of Theorem neibastop2lem
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neibastop2.s . . . . 5 𝑆 = {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}
2 ssrab2 4030 . . . . 5 {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅} ⊆ 𝑋
31, 2eqsstri 3981 . . . 4 𝑆𝑋
4 neibastop1.1 . . . . 5 (𝜑𝑋𝑉)
5 elpw2g 5271 . . . . 5 (𝑋𝑉 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
64, 5syl 17 . . . 4 (𝜑 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
73, 6mpbiri 258 . . 3 (𝜑𝑆 ∈ 𝒫 𝑋)
8 fveq2 6822 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
98ineq1d 4169 . . . . . . . 8 (𝑦 = 𝑥 → ((𝐹𝑦) ∩ 𝒫 𝑓) = ((𝐹𝑥) ∩ 𝒫 𝑓))
109neeq1d 2987 . . . . . . 7 (𝑦 = 𝑥 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅))
1110rexbidv 3156 . . . . . 6 (𝑦 = 𝑥 → (∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅))
1211, 1elrab2 3650 . . . . 5 (𝑥𝑆 ↔ (𝑥𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅))
13 frfnom 8354 . . . . . . . . . 10 (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω) Fn ω
14 neibastop2.g . . . . . . . . . . 11 𝐺 = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)
1514fneq1i 6578 . . . . . . . . . 10 (𝐺 Fn ω ↔ (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω) Fn ω)
1613, 15mpbir 231 . . . . . . . . 9 𝐺 Fn ω
17 fnunirn 7187 . . . . . . . . 9 (𝐺 Fn ω → (𝑓 ran 𝐺 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘)))
1816, 17ax-mp 5 . . . . . . . 8 (𝑓 ran 𝐺 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘))
19 n0 4303 . . . . . . . . . 10 (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))
20 inss1 4187 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∩ 𝒫 𝑓) ⊆ (𝐹𝑥)
2120sseli 3930 . . . . . . . . . . . . . . 15 (𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓) → 𝑣 ∈ (𝐹𝑥))
22 neibastop1.6 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
2322anassrs 467 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑣 ∈ (𝐹𝑥)) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
2421, 23sylan2 593 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
2524adantrl 716 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
26 simprl 770 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑡 ∈ (𝐹𝑥))
27 fvssunirn 6853 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹𝑥) ⊆ ran 𝐹
28 neibastop1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
2928frnd 6659 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ran 𝐹 ⊆ (𝒫 𝒫 𝑋 ∖ {∅}))
3029difss2d 4089 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ran 𝐹 ⊆ 𝒫 𝒫 𝑋)
31 sspwuni 5048 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ran 𝐹 ⊆ 𝒫 𝒫 𝑋 ran 𝐹 ⊆ 𝒫 𝑋)
3230, 31sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 ran 𝐹 ⊆ 𝒫 𝑋)
3332ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ran 𝐹 ⊆ 𝒫 𝑋)
3427, 33sstrid 3946 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐹𝑥) ⊆ 𝒫 𝑋)
3534sselda 3934 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) → 𝑡 ∈ 𝒫 𝑋)
3635elpwid 4559 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) → 𝑡𝑋)
3736sselda 3934 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ 𝑦𝑡) → 𝑦𝑋)
3837adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑦𝑋)
39 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑓 ∈ (𝐺𝑘))
40 rspe 3222 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝑋𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)) → ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))
4140ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))
42 eliun 4945 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑧))
43 pweq 4564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑓 → 𝒫 𝑧 = 𝒫 𝑓)
4443ineq2d 4170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑓 → ((𝐹𝑥) ∩ 𝒫 𝑧) = ((𝐹𝑥) ∩ 𝒫 𝑓))
4544eleq2d 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 𝑓 → (𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)))
4645rexbidv 3156 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑓 → (∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)))
4742, 46bitrid 283 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑓 → (𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)))
4847rspcev 3577 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ (𝐺𝑘) ∧ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)) → ∃𝑧 ∈ (𝐺𝑘)𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
4939, 41, 48syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ∃𝑧 ∈ (𝐺𝑘)𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
50 eliun 4945 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑧 ∈ (𝐺𝑘)𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
5149, 50sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑣 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
52 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝜑)
53 simprll 778 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑘 ∈ ω)
54 fvssunirn 6853 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐺𝑘) ⊆ ran 𝐺
55 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑛 = ∅ → (𝐺𝑛) = (𝐺‘∅))
5614fveq1i 6823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐺‘∅) = ((rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)‘∅)
57 snex 5374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 {𝑈} ∈ V
58 fr0g 8355 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ({𝑈} ∈ V → ((rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)‘∅) = {𝑈})
5957, 58ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)‘∅) = {𝑈}
6056, 59eqtri 2754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐺‘∅) = {𝑈}
6155, 60eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 = ∅ → (𝐺𝑛) = {𝑈})
6261sseq1d 3966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 = ∅ → ((𝐺𝑛) ⊆ 𝒫 𝑈 ↔ {𝑈} ⊆ 𝒫 𝑈))
63 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
6463sseq1d 3966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 = 𝑘 → ((𝐺𝑛) ⊆ 𝒫 𝑈 ↔ (𝐺𝑘) ⊆ 𝒫 𝑈))
65 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 = suc 𝑘 → (𝐺𝑛) = (𝐺‘suc 𝑘))
6665sseq1d 3966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 = suc 𝑘 → ((𝐺𝑛) ⊆ 𝒫 𝑈 ↔ (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈))
67 neibastop2.f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑈 ∈ (𝐹𝑃))
68 pwidg 4570 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑈 ∈ (𝐹𝑃) → 𝑈 ∈ 𝒫 𝑈)
6967, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝑈 ∈ 𝒫 𝑈)
7069snssd 4761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → {𝑈} ⊆ 𝒫 𝑈)
71 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑘 ∈ ω)
7267adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑈 ∈ (𝐹𝑃))
7372pwexd 5317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝒫 𝑈 ∈ V)
74 inss2 4188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑧
75 elpwi 4557 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑧 ∈ 𝒫 𝑈𝑧𝑈)
7675adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑𝑧 ∈ 𝒫 𝑈) → 𝑧𝑈)
7776sspwd 4563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑧 ∈ 𝒫 𝑈) → 𝒫 𝑧 ⊆ 𝒫 𝑈)
7874, 77sstrid 3946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑𝑧 ∈ 𝒫 𝑈) → ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
7978ralrimivw 3128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑𝑧 ∈ 𝒫 𝑈) → ∀𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
80 iunss 4994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ( 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 ↔ ∀𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8179, 80sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑𝑧 ∈ 𝒫 𝑈) → 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8281ralrimiva 3124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜑 → ∀𝑧 ∈ 𝒫 𝑈 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
83 ssralv 4003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐺𝑘) ⊆ 𝒫 𝑈 → (∀𝑧 ∈ 𝒫 𝑈 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 → ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈))
8483adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈) → (∀𝑧 ∈ 𝒫 𝑈 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 → ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈))
8582, 84mpan9 506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
86 iunss 4994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ( 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 ↔ ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8785, 86sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8873, 87ssexd 5262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ∈ V)
89 iuneq1 4958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 = 𝑎 𝑧𝑦 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) = 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
90 iuneq1 4958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 = (𝐺𝑘) → 𝑧𝑦 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
9114, 89, 90frsucmpt2 8359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ∈ V) → (𝐺‘suc 𝑘) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
9271, 88, 91syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → (𝐺‘suc 𝑘) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
9392, 87eqsstrd 3969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈)
9493expr 456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑘 ∈ ω) → ((𝐺𝑘) ⊆ 𝒫 𝑈 → (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈))
9594expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 ∈ ω → (𝜑 → ((𝐺𝑘) ⊆ 𝒫 𝑈 → (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈)))
9662, 64, 66, 70, 95finds2 7828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 ∈ ω → (𝜑 → (𝐺𝑛) ⊆ 𝒫 𝑈))
97 fvex 6835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐺𝑛) ∈ V
9897elpw 4554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐺𝑛) ∈ 𝒫 𝒫 𝑈 ↔ (𝐺𝑛) ⊆ 𝒫 𝑈)
9996, 98imbitrrdi 252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 ∈ ω → (𝜑 → (𝐺𝑛) ∈ 𝒫 𝒫 𝑈))
10099com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑛 ∈ ω → (𝐺𝑛) ∈ 𝒫 𝒫 𝑈))
101100ralrimiv 3123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ∀𝑛 ∈ ω (𝐺𝑛) ∈ 𝒫 𝒫 𝑈)
102 ffnfv 7052 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐺:ω⟶𝒫 𝒫 𝑈 ↔ (𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺𝑛) ∈ 𝒫 𝒫 𝑈))
10316, 102mpbiran 709 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐺:ω⟶𝒫 𝒫 𝑈 ↔ ∀𝑛 ∈ ω (𝐺𝑛) ∈ 𝒫 𝒫 𝑈)
104101, 103sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐺:ω⟶𝒫 𝒫 𝑈)
105104frnd 6659 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ran 𝐺 ⊆ 𝒫 𝒫 𝑈)
106 sspwuni 5048 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ran 𝐺 ⊆ 𝒫 𝒫 𝑈 ran 𝐺 ⊆ 𝒫 𝑈)
107105, 106sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 ran 𝐺 ⊆ 𝒫 𝑈)
108107ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ran 𝐺 ⊆ 𝒫 𝑈)
10954, 108sstrid 3946 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐺𝑘) ⊆ 𝒫 𝑈)
11052, 53, 109, 92syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐺‘suc 𝑘) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
11151, 110eleqtrrd 2834 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑣 ∈ (𝐺‘suc 𝑘))
112 peano2 7820 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
11353, 112syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → suc 𝑘 ∈ ω)
114 fnfvelrn 7013 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 Fn ω ∧ suc 𝑘 ∈ ω) → (𝐺‘suc 𝑘) ∈ ran 𝐺)
11516, 113, 114sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐺‘suc 𝑘) ∈ ran 𝐺)
116 elunii 4864 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 ∈ (𝐺‘suc 𝑘) ∧ (𝐺‘suc 𝑘) ∈ ran 𝐺) → 𝑣 ran 𝐺)
117111, 115, 116syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑣 ran 𝐺)
118117ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑣 ran 𝐺)
119 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
120 pweq 4564 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑣 → 𝒫 𝑓 = 𝒫 𝑣)
121120ineq2d 4170 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑣 → ((𝐹𝑦) ∩ 𝒫 𝑓) = ((𝐹𝑦) ∩ 𝒫 𝑣))
122121neeq1d 2987 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑣 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅))
123122rspcev 3577 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ran 𝐺 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅) → ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)
124118, 119, 123syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)
1251reqabi 3418 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑆 ↔ (𝑦𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
12638, 124, 125sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑦𝑆)
127126expr 456 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ 𝑦𝑡) → (((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅ → 𝑦𝑆))
128127ralimdva 3144 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) → (∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅ → ∀𝑦𝑡 𝑦𝑆))
129128impr 454 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ∀𝑦𝑡 𝑦𝑆)
130 dfss3 3923 . . . . . . . . . . . . . . . 16 (𝑡𝑆 ↔ ∀𝑦𝑡 𝑦𝑆)
131129, 130sylibr 234 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑡𝑆)
132 velpw 4555 . . . . . . . . . . . . . . 15 (𝑡 ∈ 𝒫 𝑆𝑡𝑆)
133131, 132sylibr 234 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑡 ∈ 𝒫 𝑆)
134 inelcm 4415 . . . . . . . . . . . . . 14 ((𝑡 ∈ (𝐹𝑥) ∧ 𝑡 ∈ 𝒫 𝑆) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
13526, 133, 134syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
13625, 135rexlimddv 3139 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
137136expr 456 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘))) → (𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
138137exlimdv 1934 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘))) → (∃𝑣 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
13919, 138biimtrid 242 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘))) → (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
140139rexlimdvaa 3134 . . . . . . . 8 ((𝜑𝑥𝑋) → (∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘) → (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)))
14118, 140biimtrid 242 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑓 ran 𝐺 → (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)))
142141rexlimdv 3131 . . . . . 6 ((𝜑𝑥𝑋) → (∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
143142expimpd 453 . . . . 5 (𝜑 → ((𝑥𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
14412, 143biimtrid 242 . . . 4 (𝜑 → (𝑥𝑆 → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
145144ralrimiv 3123 . . 3 (𝜑 → ∀𝑥𝑆 ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
146 pweq 4564 . . . . . . 7 (𝑜 = 𝑆 → 𝒫 𝑜 = 𝒫 𝑆)
147146ineq2d 4170 . . . . . 6 (𝑜 = 𝑆 → ((𝐹𝑥) ∩ 𝒫 𝑜) = ((𝐹𝑥) ∩ 𝒫 𝑆))
148147neeq1d 2987 . . . . 5 (𝑜 = 𝑆 → (((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
149148raleqbi1dv 3304 . . . 4 (𝑜 = 𝑆 → (∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ∀𝑥𝑆 ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
150 neibastop1.4 . . . 4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
151149, 150elrab2 3650 . . 3 (𝑆𝐽 ↔ (𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑆 ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
1527, 145, 151sylanbrc 583 . 2 (𝜑𝑆𝐽)
153 neibastop2.p . . 3 (𝜑𝑃𝑋)
154 snidg 4613 . . . . . 6 (𝑈 ∈ (𝐹𝑃) → 𝑈 ∈ {𝑈})
15567, 154syl 17 . . . . 5 (𝜑𝑈 ∈ {𝑈})
156 peano1 7819 . . . . . . 7 ∅ ∈ ω
157 fnfvelrn 7013 . . . . . . 7 ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺)
15816, 156, 157mp2an 692 . . . . . 6 (𝐺‘∅) ∈ ran 𝐺
15960, 158eqeltrri 2828 . . . . 5 {𝑈} ∈ ran 𝐺
160 elunii 4864 . . . . 5 ((𝑈 ∈ {𝑈} ∧ {𝑈} ∈ ran 𝐺) → 𝑈 ran 𝐺)
161155, 159, 160sylancl 586 . . . 4 (𝜑𝑈 ran 𝐺)
162 inelcm 4415 . . . . 5 ((𝑈 ∈ (𝐹𝑃) ∧ 𝑈 ∈ 𝒫 𝑈) → ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅)
16367, 69, 162syl2anc 584 . . . 4 (𝜑 → ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅)
164 pweq 4564 . . . . . . 7 (𝑓 = 𝑈 → 𝒫 𝑓 = 𝒫 𝑈)
165164ineq2d 4170 . . . . . 6 (𝑓 = 𝑈 → ((𝐹𝑃) ∩ 𝒫 𝑓) = ((𝐹𝑃) ∩ 𝒫 𝑈))
166165neeq1d 2987 . . . . 5 (𝑓 = 𝑈 → (((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅))
167166rspcev 3577 . . . 4 ((𝑈 ran 𝐺 ∧ ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅) → ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅)
168161, 163, 167syl2anc 584 . . 3 (𝜑 → ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅)
169 fveq2 6822 . . . . . . 7 (𝑦 = 𝑃 → (𝐹𝑦) = (𝐹𝑃))
170169ineq1d 4169 . . . . . 6 (𝑦 = 𝑃 → ((𝐹𝑦) ∩ 𝒫 𝑓) = ((𝐹𝑃) ∩ 𝒫 𝑓))
171170neeq1d 2987 . . . . 5 (𝑦 = 𝑃 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅))
172171rexbidv 3156 . . . 4 (𝑦 = 𝑃 → (∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅))
173172, 1elrab2 3650 . . 3 (𝑃𝑆 ↔ (𝑃𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅))
174153, 168, 173sylanbrc 583 . 2 (𝜑𝑃𝑆)
175 eluni2 4863 . . . . . . 7 (𝑓 ran 𝐺 ↔ ∃𝑧 ∈ ran 𝐺 𝑓𝑧)
176 eleq2 2820 . . . . . . . . . 10 (𝑧 = (𝐺𝑘) → (𝑓𝑧𝑓 ∈ (𝐺𝑘)))
177176rexrn 7020 . . . . . . . . 9 (𝐺 Fn ω → (∃𝑧 ∈ ran 𝐺 𝑓𝑧 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘)))
17816, 177ax-mp 5 . . . . . . . 8 (∃𝑧 ∈ ran 𝐺 𝑓𝑧 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘))
179104adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝑋) → 𝐺:ω⟶𝒫 𝒫 𝑈)
180179ffvelcdmda 7017 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ∈ 𝒫 𝒫 𝑈)
181180elpwid 4559 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ⊆ 𝒫 𝑈)
182181sselda 3934 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → 𝑓 ∈ 𝒫 𝑈)
183182adantrr 717 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑓 ∈ 𝒫 𝑈)
184183elpwid 4559 . . . . . . . . . . . 12 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑓𝑈)
185 neibastop2.u . . . . . . . . . . . . 13 (𝜑𝑈𝑁)
186185ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑈𝑁)
187184, 186sstrd 3945 . . . . . . . . . . 11 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑓𝑁)
188 n0 4303 . . . . . . . . . . . . 13 (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓))
189 elin 3918 . . . . . . . . . . . . . . 15 (𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓) ↔ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))
190 simprrr 781 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑣 ∈ 𝒫 𝑓)
191190elpwid 4559 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑣𝑓)
192 simpllr 775 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑦𝑋)
193 neibastop1.5 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
194193expr 456 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣))
195194ralrimiva 3124 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝑋 (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣))
196195ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → ∀𝑥𝑋 (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣))
197 simprrl 780 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑣 ∈ (𝐹𝑦))
198 fveq2 6822 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
199198eleq2d 2817 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝑣 ∈ (𝐹𝑥) ↔ 𝑣 ∈ (𝐹𝑦)))
200 elequ1 2118 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝑥𝑣𝑦𝑣))
201199, 200imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → ((𝑣 ∈ (𝐹𝑥) → 𝑥𝑣) ↔ (𝑣 ∈ (𝐹𝑦) → 𝑦𝑣)))
202201rspcv 3573 . . . . . . . . . . . . . . . . . 18 (𝑦𝑋 → (∀𝑥𝑋 (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣) → (𝑣 ∈ (𝐹𝑦) → 𝑦𝑣)))
203192, 196, 197, 202syl3c 66 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑦𝑣)
204191, 203sseldd 3935 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑦𝑓)
205204expr 456 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → ((𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓) → 𝑦𝑓))
206189, 205biimtrid 242 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → (𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓) → 𝑦𝑓))
207206exlimdv 1934 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → (∃𝑣 𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓) → 𝑦𝑓))
208188, 207biimtrid 242 . . . . . . . . . . . 12 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑓))
209208impr 454 . . . . . . . . . . 11 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑦𝑓)
210187, 209sseldd 3935 . . . . . . . . . 10 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑦𝑁)
211210exp32 420 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) → (𝑓 ∈ (𝐺𝑘) → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
212211rexlimdva 3133 . . . . . . . 8 ((𝜑𝑦𝑋) → (∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘) → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
213178, 212biimtrid 242 . . . . . . 7 ((𝜑𝑦𝑋) → (∃𝑧 ∈ ran 𝐺 𝑓𝑧 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
214175, 213biimtrid 242 . . . . . 6 ((𝜑𝑦𝑋) → (𝑓 ran 𝐺 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
215214rexlimdv 3131 . . . . 5 ((𝜑𝑦𝑋) → (∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁))
2162153impia 1117 . . . 4 ((𝜑𝑦𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅) → 𝑦𝑁)
217216rabssdv 4025 . . 3 (𝜑 → {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅} ⊆ 𝑁)
2181, 217eqsstrid 3973 . 2 (𝜑𝑆𝑁)
219 eleq2 2820 . . . 4 (𝑢 = 𝑆 → (𝑃𝑢𝑃𝑆))
220 sseq1 3960 . . . 4 (𝑢 = 𝑆 → (𝑢𝑁𝑆𝑁))
221219, 220anbi12d 632 . . 3 (𝑢 = 𝑆 → ((𝑃𝑢𝑢𝑁) ↔ (𝑃𝑆𝑆𝑁)))
222221rspcev 3577 . 2 ((𝑆𝐽 ∧ (𝑃𝑆𝑆𝑁)) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
223152, 174, 218, 222syl12anc 836 1 (𝜑 → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cdif 3899  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550  {csn 4576   cuni 4859   ciun 4941  cmpt 5172  ran crn 5617  cres 5618  suc csuc 6308   Fn wfn 6476  wf 6477  cfv 6481  ωcom 7796  reccrdg 8328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329
This theorem is referenced by:  neibastop2  36401
  Copyright terms: Public domain W3C validator