Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop2lem Structured version   Visualization version   GIF version

Theorem neibastop2lem 33710
Description: Lemma for neibastop2 33711. (Contributed by Jeff Hankins, 12-Sep-2009.)
Hypotheses
Ref Expression
neibastop1.1 (𝜑𝑋𝑉)
neibastop1.2 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
neibastop1.3 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
neibastop1.4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
neibastop1.5 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
neibastop1.6 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
neibastop2.p (𝜑𝑃𝑋)
neibastop2.n (𝜑𝑁𝑋)
neibastop2.f (𝜑𝑈 ∈ (𝐹𝑃))
neibastop2.u (𝜑𝑈𝑁)
neibastop2.g 𝐺 = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)
neibastop2.s 𝑆 = {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}
Assertion
Ref Expression
neibastop2lem (𝜑 → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
Distinct variable groups:   𝑡,𝑓,𝑣,𝑦,𝑧,𝐺   𝑣,𝑢,𝑥,𝑦,𝑧,𝐽   𝑓,𝑜,𝑢,𝑤,𝑥,𝑃,𝑡,𝑣,𝑦,𝑧   𝑓,𝑁,𝑜,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑓,𝑜,𝑡,𝑢,𝑣,𝑥,𝑦   𝑈,𝑓,𝑥,𝑦,𝑧   𝑓,𝑎,𝑜,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑜,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝑋,𝑎,𝑓,𝑜,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑢,𝑎)   𝑃(𝑎)   𝑆(𝑧,𝑤,𝑎)   𝑈(𝑤,𝑣,𝑢,𝑡,𝑜,𝑎)   𝐺(𝑥,𝑤,𝑢,𝑜,𝑎)   𝐽(𝑤,𝑡,𝑓,𝑜,𝑎)   𝑁(𝑎)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑜,𝑎)

Proof of Theorem neibastop2lem
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neibastop2.s . . . . 5 𝑆 = {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}
2 ssrab2 4058 . . . . 5 {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅} ⊆ 𝑋
31, 2eqsstri 4003 . . . 4 𝑆𝑋
4 neibastop1.1 . . . . 5 (𝜑𝑋𝑉)
5 elpw2g 5249 . . . . 5 (𝑋𝑉 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
64, 5syl 17 . . . 4 (𝜑 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
73, 6mpbiri 260 . . 3 (𝜑𝑆 ∈ 𝒫 𝑋)
8 fveq2 6672 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
98ineq1d 4190 . . . . . . . 8 (𝑦 = 𝑥 → ((𝐹𝑦) ∩ 𝒫 𝑓) = ((𝐹𝑥) ∩ 𝒫 𝑓))
109neeq1d 3077 . . . . . . 7 (𝑦 = 𝑥 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅))
1110rexbidv 3299 . . . . . 6 (𝑦 = 𝑥 → (∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅))
1211, 1elrab2 3685 . . . . 5 (𝑥𝑆 ↔ (𝑥𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅))
13 frfnom 8072 . . . . . . . . . 10 (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω) Fn ω
14 neibastop2.g . . . . . . . . . . 11 𝐺 = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)
1514fneq1i 6452 . . . . . . . . . 10 (𝐺 Fn ω ↔ (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω) Fn ω)
1613, 15mpbir 233 . . . . . . . . 9 𝐺 Fn ω
17 fnunirn 7014 . . . . . . . . 9 (𝐺 Fn ω → (𝑓 ran 𝐺 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘)))
1816, 17ax-mp 5 . . . . . . . 8 (𝑓 ran 𝐺 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘))
19 n0 4312 . . . . . . . . . 10 (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))
20 inss1 4207 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∩ 𝒫 𝑓) ⊆ (𝐹𝑥)
2120sseli 3965 . . . . . . . . . . . . . . 15 (𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓) → 𝑣 ∈ (𝐹𝑥))
22 neibastop1.6 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
2322anassrs 470 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑣 ∈ (𝐹𝑥)) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
2421, 23sylan2 594 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
2524adantrl 714 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
26 simprl 769 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑡 ∈ (𝐹𝑥))
27 fvssunirn 6701 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹𝑥) ⊆ ran 𝐹
28 neibastop1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
2928frnd 6523 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ran 𝐹 ⊆ (𝒫 𝒫 𝑋 ∖ {∅}))
3029difss2d 4113 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ran 𝐹 ⊆ 𝒫 𝒫 𝑋)
31 sspwuni 5024 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ran 𝐹 ⊆ 𝒫 𝒫 𝑋 ran 𝐹 ⊆ 𝒫 𝑋)
3230, 31sylib 220 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 ran 𝐹 ⊆ 𝒫 𝑋)
3332ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ran 𝐹 ⊆ 𝒫 𝑋)
3427, 33sstrid 3980 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐹𝑥) ⊆ 𝒫 𝑋)
3534sselda 3969 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) → 𝑡 ∈ 𝒫 𝑋)
3635elpwid 4552 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) → 𝑡𝑋)
3736sselda 3969 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ 𝑦𝑡) → 𝑦𝑋)
3837adantrr 715 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑦𝑋)
39 simprlr 778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑓 ∈ (𝐺𝑘))
40 rspe 3306 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝑋𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)) → ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))
4140ad2ant2l 744 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))
42 eliun 4925 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑧))
43 pweq 4557 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑓 → 𝒫 𝑧 = 𝒫 𝑓)
4443ineq2d 4191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑓 → ((𝐹𝑥) ∩ 𝒫 𝑧) = ((𝐹𝑥) ∩ 𝒫 𝑓))
4544eleq2d 2900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 𝑓 → (𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)))
4645rexbidv 3299 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑓 → (∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)))
4742, 46syl5bb 285 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑓 → (𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)))
4847rspcev 3625 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ (𝐺𝑘) ∧ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)) → ∃𝑧 ∈ (𝐺𝑘)𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
4939, 41, 48syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ∃𝑧 ∈ (𝐺𝑘)𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
50 eliun 4925 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑧 ∈ (𝐺𝑘)𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
5149, 50sylibr 236 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑣 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
52 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝜑)
53 simprll 777 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑘 ∈ ω)
54 fvssunirn 6701 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐺𝑘) ⊆ ran 𝐺
55 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑛 = ∅ → (𝐺𝑛) = (𝐺‘∅))
5614fveq1i 6673 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐺‘∅) = ((rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)‘∅)
57 snex 5334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 {𝑈} ∈ V
58 fr0g 8073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ({𝑈} ∈ V → ((rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)‘∅) = {𝑈})
5957, 58ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)‘∅) = {𝑈}
6056, 59eqtri 2846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐺‘∅) = {𝑈}
6155, 60syl6eq 2874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 = ∅ → (𝐺𝑛) = {𝑈})
6261sseq1d 4000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 = ∅ → ((𝐺𝑛) ⊆ 𝒫 𝑈 ↔ {𝑈} ⊆ 𝒫 𝑈))
63 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
6463sseq1d 4000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 = 𝑘 → ((𝐺𝑛) ⊆ 𝒫 𝑈 ↔ (𝐺𝑘) ⊆ 𝒫 𝑈))
65 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 = suc 𝑘 → (𝐺𝑛) = (𝐺‘suc 𝑘))
6665sseq1d 4000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 = suc 𝑘 → ((𝐺𝑛) ⊆ 𝒫 𝑈 ↔ (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈))
67 neibastop2.f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑈 ∈ (𝐹𝑃))
68 pwidg 4563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑈 ∈ (𝐹𝑃) → 𝑈 ∈ 𝒫 𝑈)
6967, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝑈 ∈ 𝒫 𝑈)
7069snssd 4744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → {𝑈} ⊆ 𝒫 𝑈)
71 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑘 ∈ ω)
7267adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑈 ∈ (𝐹𝑃))
7372pwexd 5282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝒫 𝑈 ∈ V)
74 inss2 4208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑧
75 elpwi 4550 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑧 ∈ 𝒫 𝑈𝑧𝑈)
7675adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑𝑧 ∈ 𝒫 𝑈) → 𝑧𝑈)
7776sspwd 4556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑧 ∈ 𝒫 𝑈) → 𝒫 𝑧 ⊆ 𝒫 𝑈)
7874, 77sstrid 3980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑𝑧 ∈ 𝒫 𝑈) → ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
7978ralrimivw 3185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑𝑧 ∈ 𝒫 𝑈) → ∀𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
80 iunss 4971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ( 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 ↔ ∀𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8179, 80sylibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑𝑧 ∈ 𝒫 𝑈) → 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8281ralrimiva 3184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜑 → ∀𝑧 ∈ 𝒫 𝑈 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
83 ssralv 4035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐺𝑘) ⊆ 𝒫 𝑈 → (∀𝑧 ∈ 𝒫 𝑈 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 → ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈))
8483adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈) → (∀𝑧 ∈ 𝒫 𝑈 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 → ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈))
8582, 84mpan9 509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
86 iunss 4971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ( 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 ↔ ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8785, 86sylibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8873, 87ssexd 5230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ∈ V)
89 iuneq1 4937 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 = 𝑎 𝑧𝑦 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) = 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
90 iuneq1 4937 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 = (𝐺𝑘) → 𝑧𝑦 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
9114, 89, 90frsucmpt2 8078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ∈ V) → (𝐺‘suc 𝑘) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
9271, 88, 91syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → (𝐺‘suc 𝑘) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
9392, 87eqsstrd 4007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈)
9493expr 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑘 ∈ ω) → ((𝐺𝑘) ⊆ 𝒫 𝑈 → (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈))
9594expcom 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 ∈ ω → (𝜑 → ((𝐺𝑘) ⊆ 𝒫 𝑈 → (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈)))
9662, 64, 66, 70, 95finds2 7612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 ∈ ω → (𝜑 → (𝐺𝑛) ⊆ 𝒫 𝑈))
97 fvex 6685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐺𝑛) ∈ V
9897elpw 4545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐺𝑛) ∈ 𝒫 𝒫 𝑈 ↔ (𝐺𝑛) ⊆ 𝒫 𝑈)
9996, 98syl6ibr 254 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 ∈ ω → (𝜑 → (𝐺𝑛) ∈ 𝒫 𝒫 𝑈))
10099com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑛 ∈ ω → (𝐺𝑛) ∈ 𝒫 𝒫 𝑈))
101100ralrimiv 3183 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ∀𝑛 ∈ ω (𝐺𝑛) ∈ 𝒫 𝒫 𝑈)
102 ffnfv 6884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐺:ω⟶𝒫 𝒫 𝑈 ↔ (𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺𝑛) ∈ 𝒫 𝒫 𝑈))
10316, 102mpbiran 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐺:ω⟶𝒫 𝒫 𝑈 ↔ ∀𝑛 ∈ ω (𝐺𝑛) ∈ 𝒫 𝒫 𝑈)
104101, 103sylibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐺:ω⟶𝒫 𝒫 𝑈)
105104frnd 6523 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ran 𝐺 ⊆ 𝒫 𝒫 𝑈)
106 sspwuni 5024 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ran 𝐺 ⊆ 𝒫 𝒫 𝑈 ran 𝐺 ⊆ 𝒫 𝑈)
107105, 106sylib 220 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 ran 𝐺 ⊆ 𝒫 𝑈)
108107ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ran 𝐺 ⊆ 𝒫 𝑈)
10954, 108sstrid 3980 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐺𝑘) ⊆ 𝒫 𝑈)
11052, 53, 109, 92syl12anc 834 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐺‘suc 𝑘) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
11151, 110eleqtrrd 2918 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑣 ∈ (𝐺‘suc 𝑘))
112 peano2 7604 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
11353, 112syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → suc 𝑘 ∈ ω)
114 fnfvelrn 6850 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 Fn ω ∧ suc 𝑘 ∈ ω) → (𝐺‘suc 𝑘) ∈ ran 𝐺)
11516, 113, 114sylancr 589 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐺‘suc 𝑘) ∈ ran 𝐺)
116 elunii 4845 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 ∈ (𝐺‘suc 𝑘) ∧ (𝐺‘suc 𝑘) ∈ ran 𝐺) → 𝑣 ran 𝐺)
117111, 115, 116syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑣 ran 𝐺)
118117ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑣 ran 𝐺)
119 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
120 pweq 4557 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑣 → 𝒫 𝑓 = 𝒫 𝑣)
121120ineq2d 4191 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑣 → ((𝐹𝑦) ∩ 𝒫 𝑓) = ((𝐹𝑦) ∩ 𝒫 𝑣))
122121neeq1d 3077 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑣 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅))
123122rspcev 3625 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ran 𝐺 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅) → ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)
124118, 119, 123syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)
1251rabeq2i 3489 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑆 ↔ (𝑦𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
12638, 124, 125sylanbrc 585 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑦𝑆)
127126expr 459 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ 𝑦𝑡) → (((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅ → 𝑦𝑆))
128127ralimdva 3179 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) → (∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅ → ∀𝑦𝑡 𝑦𝑆))
129128impr 457 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ∀𝑦𝑡 𝑦𝑆)
130 dfss3 3958 . . . . . . . . . . . . . . . 16 (𝑡𝑆 ↔ ∀𝑦𝑡 𝑦𝑆)
131129, 130sylibr 236 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑡𝑆)
132 velpw 4546 . . . . . . . . . . . . . . 15 (𝑡 ∈ 𝒫 𝑆𝑡𝑆)
133131, 132sylibr 236 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑡 ∈ 𝒫 𝑆)
134 inelcm 4416 . . . . . . . . . . . . . 14 ((𝑡 ∈ (𝐹𝑥) ∧ 𝑡 ∈ 𝒫 𝑆) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
13526, 133, 134syl2anc 586 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
13625, 135rexlimddv 3293 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
137136expr 459 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘))) → (𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
138137exlimdv 1934 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘))) → (∃𝑣 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
13919, 138syl5bi 244 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘))) → (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
140139rexlimdvaa 3287 . . . . . . . 8 ((𝜑𝑥𝑋) → (∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘) → (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)))
14118, 140syl5bi 244 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑓 ran 𝐺 → (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)))
142141rexlimdv 3285 . . . . . 6 ((𝜑𝑥𝑋) → (∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
143142expimpd 456 . . . . 5 (𝜑 → ((𝑥𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
14412, 143syl5bi 244 . . . 4 (𝜑 → (𝑥𝑆 → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
145144ralrimiv 3183 . . 3 (𝜑 → ∀𝑥𝑆 ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
146 pweq 4557 . . . . . . 7 (𝑜 = 𝑆 → 𝒫 𝑜 = 𝒫 𝑆)
147146ineq2d 4191 . . . . . 6 (𝑜 = 𝑆 → ((𝐹𝑥) ∩ 𝒫 𝑜) = ((𝐹𝑥) ∩ 𝒫 𝑆))
148147neeq1d 3077 . . . . 5 (𝑜 = 𝑆 → (((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
149148raleqbi1dv 3405 . . . 4 (𝑜 = 𝑆 → (∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ∀𝑥𝑆 ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
150 neibastop1.4 . . . 4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
151149, 150elrab2 3685 . . 3 (𝑆𝐽 ↔ (𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑆 ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
1527, 145, 151sylanbrc 585 . 2 (𝜑𝑆𝐽)
153 neibastop2.p . . 3 (𝜑𝑃𝑋)
154 snidg 4601 . . . . . 6 (𝑈 ∈ (𝐹𝑃) → 𝑈 ∈ {𝑈})
15567, 154syl 17 . . . . 5 (𝜑𝑈 ∈ {𝑈})
156 peano1 7603 . . . . . . 7 ∅ ∈ ω
157 fnfvelrn 6850 . . . . . . 7 ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺)
15816, 156, 157mp2an 690 . . . . . 6 (𝐺‘∅) ∈ ran 𝐺
15960, 158eqeltrri 2912 . . . . 5 {𝑈} ∈ ran 𝐺
160 elunii 4845 . . . . 5 ((𝑈 ∈ {𝑈} ∧ {𝑈} ∈ ran 𝐺) → 𝑈 ran 𝐺)
161155, 159, 160sylancl 588 . . . 4 (𝜑𝑈 ran 𝐺)
162 inelcm 4416 . . . . 5 ((𝑈 ∈ (𝐹𝑃) ∧ 𝑈 ∈ 𝒫 𝑈) → ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅)
16367, 69, 162syl2anc 586 . . . 4 (𝜑 → ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅)
164 pweq 4557 . . . . . . 7 (𝑓 = 𝑈 → 𝒫 𝑓 = 𝒫 𝑈)
165164ineq2d 4191 . . . . . 6 (𝑓 = 𝑈 → ((𝐹𝑃) ∩ 𝒫 𝑓) = ((𝐹𝑃) ∩ 𝒫 𝑈))
166165neeq1d 3077 . . . . 5 (𝑓 = 𝑈 → (((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅))
167166rspcev 3625 . . . 4 ((𝑈 ran 𝐺 ∧ ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅) → ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅)
168161, 163, 167syl2anc 586 . . 3 (𝜑 → ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅)
169 fveq2 6672 . . . . . . 7 (𝑦 = 𝑃 → (𝐹𝑦) = (𝐹𝑃))
170169ineq1d 4190 . . . . . 6 (𝑦 = 𝑃 → ((𝐹𝑦) ∩ 𝒫 𝑓) = ((𝐹𝑃) ∩ 𝒫 𝑓))
171170neeq1d 3077 . . . . 5 (𝑦 = 𝑃 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅))
172171rexbidv 3299 . . . 4 (𝑦 = 𝑃 → (∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅))
173172, 1elrab2 3685 . . 3 (𝑃𝑆 ↔ (𝑃𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅))
174153, 168, 173sylanbrc 585 . 2 (𝜑𝑃𝑆)
175 eluni2 4844 . . . . . . 7 (𝑓 ran 𝐺 ↔ ∃𝑧 ∈ ran 𝐺 𝑓𝑧)
176 eleq2 2903 . . . . . . . . . 10 (𝑧 = (𝐺𝑘) → (𝑓𝑧𝑓 ∈ (𝐺𝑘)))
177176rexrn 6855 . . . . . . . . 9 (𝐺 Fn ω → (∃𝑧 ∈ ran 𝐺 𝑓𝑧 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘)))
17816, 177ax-mp 5 . . . . . . . 8 (∃𝑧 ∈ ran 𝐺 𝑓𝑧 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘))
179104adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝑋) → 𝐺:ω⟶𝒫 𝒫 𝑈)
180179ffvelrnda 6853 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ∈ 𝒫 𝒫 𝑈)
181180elpwid 4552 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ⊆ 𝒫 𝑈)
182181sselda 3969 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → 𝑓 ∈ 𝒫 𝑈)
183182adantrr 715 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑓 ∈ 𝒫 𝑈)
184183elpwid 4552 . . . . . . . . . . . 12 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑓𝑈)
185 neibastop2.u . . . . . . . . . . . . 13 (𝜑𝑈𝑁)
186185ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑈𝑁)
187184, 186sstrd 3979 . . . . . . . . . . 11 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑓𝑁)
188 n0 4312 . . . . . . . . . . . . 13 (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓))
189 elin 4171 . . . . . . . . . . . . . . 15 (𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓) ↔ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))
190 simprrr 780 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑣 ∈ 𝒫 𝑓)
191190elpwid 4552 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑣𝑓)
192 simpllr 774 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑦𝑋)
193 neibastop1.5 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
194193expr 459 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣))
195194ralrimiva 3184 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝑋 (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣))
196195ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → ∀𝑥𝑋 (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣))
197 simprrl 779 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑣 ∈ (𝐹𝑦))
198 fveq2 6672 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
199198eleq2d 2900 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝑣 ∈ (𝐹𝑥) ↔ 𝑣 ∈ (𝐹𝑦)))
200 elequ1 2121 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝑥𝑣𝑦𝑣))
201199, 200imbi12d 347 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → ((𝑣 ∈ (𝐹𝑥) → 𝑥𝑣) ↔ (𝑣 ∈ (𝐹𝑦) → 𝑦𝑣)))
202201rspcv 3620 . . . . . . . . . . . . . . . . . 18 (𝑦𝑋 → (∀𝑥𝑋 (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣) → (𝑣 ∈ (𝐹𝑦) → 𝑦𝑣)))
203192, 196, 197, 202syl3c 66 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑦𝑣)
204191, 203sseldd 3970 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑦𝑓)
205204expr 459 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → ((𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓) → 𝑦𝑓))
206189, 205syl5bi 244 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → (𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓) → 𝑦𝑓))
207206exlimdv 1934 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → (∃𝑣 𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓) → 𝑦𝑓))
208188, 207syl5bi 244 . . . . . . . . . . . 12 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑓))
209208impr 457 . . . . . . . . . . 11 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑦𝑓)
210187, 209sseldd 3970 . . . . . . . . . 10 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑦𝑁)
211210exp32 423 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) → (𝑓 ∈ (𝐺𝑘) → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
212211rexlimdva 3286 . . . . . . . 8 ((𝜑𝑦𝑋) → (∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘) → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
213178, 212syl5bi 244 . . . . . . 7 ((𝜑𝑦𝑋) → (∃𝑧 ∈ ran 𝐺 𝑓𝑧 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
214175, 213syl5bi 244 . . . . . 6 ((𝜑𝑦𝑋) → (𝑓 ran 𝐺 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
215214rexlimdv 3285 . . . . 5 ((𝜑𝑦𝑋) → (∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁))
2162153impia 1113 . . . 4 ((𝜑𝑦𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅) → 𝑦𝑁)
217216rabssdv 4053 . . 3 (𝜑 → {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅} ⊆ 𝑁)
2181, 217eqsstrid 4017 . 2 (𝜑𝑆𝑁)
219 eleq2 2903 . . . 4 (𝑢 = 𝑆 → (𝑃𝑢𝑃𝑆))
220 sseq1 3994 . . . 4 (𝑢 = 𝑆 → (𝑢𝑁𝑆𝑁))
221219, 220anbi12d 632 . . 3 (𝑢 = 𝑆 → ((𝑃𝑢𝑢𝑁) ↔ (𝑃𝑆𝑆𝑁)))
222221rspcev 3625 . 2 ((𝑆𝐽 ∧ (𝑃𝑆𝑆𝑁)) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
223152, 174, 218, 222syl12anc 834 1 (𝜑 → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  cdif 3935  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   cuni 4840   ciun 4921  cmpt 5148  ran crn 5558  cres 5559  suc csuc 6195   Fn wfn 6352  wf 6353  cfv 6357  ωcom 7582  reccrdg 8047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048
This theorem is referenced by:  neibastop2  33711
  Copyright terms: Public domain W3C validator