MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexexlem3d Structured version   Visualization version   GIF version

Theorem mreexexlem3d 16750
Description: Base case of the induction in mreexexd 16752. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexexlem2d.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexexlem2d.2 𝑁 = (mrCls‘𝐴)
mreexexlem2d.3 𝐼 = (mrInd‘𝐴)
mreexexlem2d.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexexlem2d.5 (𝜑𝐹 ⊆ (𝑋𝐻))
mreexexlem2d.6 (𝜑𝐺 ⊆ (𝑋𝐻))
mreexexlem2d.7 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
mreexexlem2d.8 (𝜑 → (𝐹𝐻) ∈ 𝐼)
mreexexlem3d.9 (𝜑 → (𝐹 = ∅ ∨ 𝐺 = ∅))
Assertion
Ref Expression
mreexexlem3d (𝜑 → ∃𝑖 ∈ 𝒫 𝐺(𝐹𝑖 ∧ (𝑖𝐻) ∈ 𝐼))
Distinct variable groups:   𝑖,𝐹   𝑖,𝐺   𝑖,𝐻   𝑖,𝐼
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑖,𝑠)   𝐴(𝑦,𝑧,𝑖,𝑠)   𝐹(𝑦,𝑧,𝑠)   𝐺(𝑦,𝑧,𝑠)   𝐻(𝑦,𝑧,𝑠)   𝐼(𝑦,𝑧,𝑠)   𝑁(𝑦,𝑧,𝑖,𝑠)   𝑋(𝑦,𝑧,𝑖,𝑠)

Proof of Theorem mreexexlem3d
StepHypRef Expression
1 simpr 485 . . . 4 ((𝜑𝐹 = ∅) → 𝐹 = ∅)
2 mreexexlem2d.1 . . . . . . . . . 10 (𝜑𝐴 ∈ (Moore‘𝑋))
32adantr 481 . . . . . . . . 9 ((𝜑𝐺 = ∅) → 𝐴 ∈ (Moore‘𝑋))
4 mreexexlem2d.2 . . . . . . . . 9 𝑁 = (mrCls‘𝐴)
5 mreexexlem2d.3 . . . . . . . . 9 𝐼 = (mrInd‘𝐴)
6 mreexexlem2d.7 . . . . . . . . . . . 12 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
76adantr 481 . . . . . . . . . . 11 ((𝜑𝐺 = ∅) → 𝐹 ⊆ (𝑁‘(𝐺𝐻)))
8 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝐺 = ∅) → 𝐺 = ∅)
98uneq1d 4065 . . . . . . . . . . . . 13 ((𝜑𝐺 = ∅) → (𝐺𝐻) = (∅ ∪ 𝐻))
10 uncom 4056 . . . . . . . . . . . . . 14 (𝐻 ∪ ∅) = (∅ ∪ 𝐻)
11 un0 4270 . . . . . . . . . . . . . 14 (𝐻 ∪ ∅) = 𝐻
1210, 11eqtr3i 2823 . . . . . . . . . . . . 13 (∅ ∪ 𝐻) = 𝐻
139, 12syl6eq 2849 . . . . . . . . . . . 12 ((𝜑𝐺 = ∅) → (𝐺𝐻) = 𝐻)
1413fveq2d 6549 . . . . . . . . . . 11 ((𝜑𝐺 = ∅) → (𝑁‘(𝐺𝐻)) = (𝑁𝐻))
157, 14sseqtrd 3934 . . . . . . . . . 10 ((𝜑𝐺 = ∅) → 𝐹 ⊆ (𝑁𝐻))
16 mreexexlem2d.8 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐻) ∈ 𝐼)
1716adantr 481 . . . . . . . . . . . . 13 ((𝜑𝐺 = ∅) → (𝐹𝐻) ∈ 𝐼)
185, 3, 17mrissd 16740 . . . . . . . . . . . 12 ((𝜑𝐺 = ∅) → (𝐹𝐻) ⊆ 𝑋)
1918unssbd 4091 . . . . . . . . . . 11 ((𝜑𝐺 = ∅) → 𝐻𝑋)
203, 4, 19mrcssidd 16729 . . . . . . . . . 10 ((𝜑𝐺 = ∅) → 𝐻 ⊆ (𝑁𝐻))
2115, 20unssd 4089 . . . . . . . . 9 ((𝜑𝐺 = ∅) → (𝐹𝐻) ⊆ (𝑁𝐻))
22 ssun2 4076 . . . . . . . . . 10 𝐻 ⊆ (𝐹𝐻)
2322a1i 11 . . . . . . . . 9 ((𝜑𝐺 = ∅) → 𝐻 ⊆ (𝐹𝐻))
243, 4, 5, 21, 23, 17mrissmrcd 16744 . . . . . . . 8 ((𝜑𝐺 = ∅) → (𝐹𝐻) = 𝐻)
25 ssequn1 4083 . . . . . . . 8 (𝐹𝐻 ↔ (𝐹𝐻) = 𝐻)
2624, 25sylibr 235 . . . . . . 7 ((𝜑𝐺 = ∅) → 𝐹𝐻)
27 mreexexlem2d.5 . . . . . . . 8 (𝜑𝐹 ⊆ (𝑋𝐻))
2827adantr 481 . . . . . . 7 ((𝜑𝐺 = ∅) → 𝐹 ⊆ (𝑋𝐻))
2926, 28ssind 4135 . . . . . 6 ((𝜑𝐺 = ∅) → 𝐹 ⊆ (𝐻 ∩ (𝑋𝐻)))
30 disjdif 4341 . . . . . 6 (𝐻 ∩ (𝑋𝐻)) = ∅
3129, 30syl6sseq 3944 . . . . 5 ((𝜑𝐺 = ∅) → 𝐹 ⊆ ∅)
32 ss0b 4277 . . . . 5 (𝐹 ⊆ ∅ ↔ 𝐹 = ∅)
3331, 32sylib 219 . . . 4 ((𝜑𝐺 = ∅) → 𝐹 = ∅)
34 mreexexlem3d.9 . . . 4 (𝜑 → (𝐹 = ∅ ∨ 𝐺 = ∅))
351, 33, 34mpjaodan 953 . . 3 (𝜑𝐹 = ∅)
36 0elpw 5154 . . 3 ∅ ∈ 𝒫 𝐺
3735, 36syl6eqel 2893 . 2 (𝜑𝐹 ∈ 𝒫 𝐺)
382elfvexd 6579 . . . 4 (𝜑𝑋 ∈ V)
3927difss2d 4038 . . . 4 (𝜑𝐹𝑋)
4038, 39ssexd 5126 . . 3 (𝜑𝐹 ∈ V)
41 enrefg 8396 . . 3 (𝐹 ∈ V → 𝐹𝐹)
4240, 41syl 17 . 2 (𝜑𝐹𝐹)
43 breq2 4972 . . . 4 (𝑖 = 𝐹 → (𝐹𝑖𝐹𝐹))
44 uneq1 4059 . . . . 5 (𝑖 = 𝐹 → (𝑖𝐻) = (𝐹𝐻))
4544eleq1d 2869 . . . 4 (𝑖 = 𝐹 → ((𝑖𝐻) ∈ 𝐼 ↔ (𝐹𝐻) ∈ 𝐼))
4643, 45anbi12d 630 . . 3 (𝑖 = 𝐹 → ((𝐹𝑖 ∧ (𝑖𝐻) ∈ 𝐼) ↔ (𝐹𝐹 ∧ (𝐹𝐻) ∈ 𝐼)))
4746rspcev 3561 . 2 ((𝐹 ∈ 𝒫 𝐺 ∧ (𝐹𝐹 ∧ (𝐹𝐻) ∈ 𝐼)) → ∃𝑖 ∈ 𝒫 𝐺(𝐹𝑖 ∧ (𝑖𝐻) ∈ 𝐼))
4837, 42, 16, 47syl12anc 833 1 (𝜑 → ∃𝑖 ∈ 𝒫 𝐺(𝐹𝑖 ∧ (𝑖𝐻) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 842   = wceq 1525  wcel 2083  wral 3107  wrex 3108  Vcvv 3440  cdif 3862  cun 3863  cin 3864  wss 3865  c0 4217  𝒫 cpw 4459  {csn 4478   class class class wbr 4968  cfv 6232  cen 8361  Moorecmre 16686  mrClscmrc 16687  mrIndcmri 16688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-int 4789  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-en 8365  df-mre 16690  df-mrc 16691  df-mri 16692
This theorem is referenced by:  mreexexlem4d  16751  mreexexd  16752
  Copyright terms: Public domain W3C validator