Proof of Theorem mreexexlem3d
Step | Hyp | Ref
| Expression |
1 | | simpr 488 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 = ∅) → 𝐹 = ∅) |
2 | | mreexexlem2d.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
3 | 2 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐺 = ∅) → 𝐴 ∈ (Moore‘𝑋)) |
4 | | mreexexlem2d.2 |
. . . . . . . . 9
⊢ 𝑁 = (mrCls‘𝐴) |
5 | | mreexexlem2d.3 |
. . . . . . . . 9
⊢ 𝐼 = (mrInd‘𝐴) |
6 | | mreexexlem2d.7 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) |
7 | 6 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐺 = ∅) → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) |
8 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐺 = ∅) → 𝐺 = ∅) |
9 | 8 | uneq1d 4076 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐺 = ∅) → (𝐺 ∪ 𝐻) = (∅ ∪ 𝐻)) |
10 | | uncom 4067 |
. . . . . . . . . . . . . 14
⊢ (𝐻 ∪ ∅) = (∅ ∪
𝐻) |
11 | | un0 4305 |
. . . . . . . . . . . . . 14
⊢ (𝐻 ∪ ∅) = 𝐻 |
12 | 10, 11 | eqtr3i 2767 |
. . . . . . . . . . . . 13
⊢ (∅
∪ 𝐻) = 𝐻 |
13 | 9, 12 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐺 = ∅) → (𝐺 ∪ 𝐻) = 𝐻) |
14 | 13 | fveq2d 6721 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐺 = ∅) → (𝑁‘(𝐺 ∪ 𝐻)) = (𝑁‘𝐻)) |
15 | 7, 14 | sseqtrd 3941 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐺 = ∅) → 𝐹 ⊆ (𝑁‘𝐻)) |
16 | | mreexexlem2d.8 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) |
17 | 16 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐺 = ∅) → (𝐹 ∪ 𝐻) ∈ 𝐼) |
18 | 5, 3, 17 | mrissd 17139 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐺 = ∅) → (𝐹 ∪ 𝐻) ⊆ 𝑋) |
19 | 18 | unssbd 4102 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐺 = ∅) → 𝐻 ⊆ 𝑋) |
20 | 3, 4, 19 | mrcssidd 17128 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐺 = ∅) → 𝐻 ⊆ (𝑁‘𝐻)) |
21 | 15, 20 | unssd 4100 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐺 = ∅) → (𝐹 ∪ 𝐻) ⊆ (𝑁‘𝐻)) |
22 | | ssun2 4087 |
. . . . . . . . . 10
⊢ 𝐻 ⊆ (𝐹 ∪ 𝐻) |
23 | 22 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐺 = ∅) → 𝐻 ⊆ (𝐹 ∪ 𝐻)) |
24 | 3, 4, 5, 21, 23, 17 | mrissmrcd 17143 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺 = ∅) → (𝐹 ∪ 𝐻) = 𝐻) |
25 | | ssequn1 4094 |
. . . . . . . 8
⊢ (𝐹 ⊆ 𝐻 ↔ (𝐹 ∪ 𝐻) = 𝐻) |
26 | 24, 25 | sylibr 237 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺 = ∅) → 𝐹 ⊆ 𝐻) |
27 | | mreexexlem2d.5 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) |
28 | 27 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺 = ∅) → 𝐹 ⊆ (𝑋 ∖ 𝐻)) |
29 | 26, 28 | ssind 4147 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺 = ∅) → 𝐹 ⊆ (𝐻 ∩ (𝑋 ∖ 𝐻))) |
30 | | disjdif 4386 |
. . . . . 6
⊢ (𝐻 ∩ (𝑋 ∖ 𝐻)) = ∅ |
31 | 29, 30 | sseqtrdi 3951 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 = ∅) → 𝐹 ⊆ ∅) |
32 | | ss0b 4312 |
. . . . 5
⊢ (𝐹 ⊆ ∅ ↔ 𝐹 = ∅) |
33 | 31, 32 | sylib 221 |
. . . 4
⊢ ((𝜑 ∧ 𝐺 = ∅) → 𝐹 = ∅) |
34 | | mreexexlem3d.9 |
. . . 4
⊢ (𝜑 → (𝐹 = ∅ ∨ 𝐺 = ∅)) |
35 | 1, 33, 34 | mpjaodan 959 |
. . 3
⊢ (𝜑 → 𝐹 = ∅) |
36 | | 0elpw 5247 |
. . 3
⊢ ∅
∈ 𝒫 𝐺 |
37 | 35, 36 | eqeltrdi 2846 |
. 2
⊢ (𝜑 → 𝐹 ∈ 𝒫 𝐺) |
38 | 2 | elfvexd 6751 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ V) |
39 | 27 | difss2d 4049 |
. . . 4
⊢ (𝜑 → 𝐹 ⊆ 𝑋) |
40 | 38, 39 | ssexd 5217 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
41 | | enrefg 8660 |
. . 3
⊢ (𝐹 ∈ V → 𝐹 ≈ 𝐹) |
42 | 40, 41 | syl 17 |
. 2
⊢ (𝜑 → 𝐹 ≈ 𝐹) |
43 | | breq2 5057 |
. . . 4
⊢ (𝑖 = 𝐹 → (𝐹 ≈ 𝑖 ↔ 𝐹 ≈ 𝐹)) |
44 | | uneq1 4070 |
. . . . 5
⊢ (𝑖 = 𝐹 → (𝑖 ∪ 𝐻) = (𝐹 ∪ 𝐻)) |
45 | 44 | eleq1d 2822 |
. . . 4
⊢ (𝑖 = 𝐹 → ((𝑖 ∪ 𝐻) ∈ 𝐼 ↔ (𝐹 ∪ 𝐻) ∈ 𝐼)) |
46 | 43, 45 | anbi12d 634 |
. . 3
⊢ (𝑖 = 𝐹 → ((𝐹 ≈ 𝑖 ∧ (𝑖 ∪ 𝐻) ∈ 𝐼) ↔ (𝐹 ≈ 𝐹 ∧ (𝐹 ∪ 𝐻) ∈ 𝐼))) |
47 | 46 | rspcev 3537 |
. 2
⊢ ((𝐹 ∈ 𝒫 𝐺 ∧ (𝐹 ≈ 𝐹 ∧ (𝐹 ∪ 𝐻) ∈ 𝐼)) → ∃𝑖 ∈ 𝒫 𝐺(𝐹 ≈ 𝑖 ∧ (𝑖 ∪ 𝐻) ∈ 𝐼)) |
48 | 37, 42, 16, 47 | syl12anc 837 |
1
⊢ (𝜑 → ∃𝑖 ∈ 𝒫 𝐺(𝐹 ≈ 𝑖 ∧ (𝑖 ∪ 𝐻) ∈ 𝐼)) |