MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexexlem3d Structured version   Visualization version   GIF version

Theorem mreexexlem3d 17355
Description: Base case of the induction in mreexexd 17357. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexexlem2d.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexexlem2d.2 𝑁 = (mrCls‘𝐴)
mreexexlem2d.3 𝐼 = (mrInd‘𝐴)
mreexexlem2d.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexexlem2d.5 (𝜑𝐹 ⊆ (𝑋𝐻))
mreexexlem2d.6 (𝜑𝐺 ⊆ (𝑋𝐻))
mreexexlem2d.7 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
mreexexlem2d.8 (𝜑 → (𝐹𝐻) ∈ 𝐼)
mreexexlem3d.9 (𝜑 → (𝐹 = ∅ ∨ 𝐺 = ∅))
Assertion
Ref Expression
mreexexlem3d (𝜑 → ∃𝑖 ∈ 𝒫 𝐺(𝐹𝑖 ∧ (𝑖𝐻) ∈ 𝐼))
Distinct variable groups:   𝑖,𝐹   𝑖,𝐺   𝑖,𝐻   𝑖,𝐼
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑖,𝑠)   𝐴(𝑦,𝑧,𝑖,𝑠)   𝐹(𝑦,𝑧,𝑠)   𝐺(𝑦,𝑧,𝑠)   𝐻(𝑦,𝑧,𝑠)   𝐼(𝑦,𝑧,𝑠)   𝑁(𝑦,𝑧,𝑖,𝑠)   𝑋(𝑦,𝑧,𝑖,𝑠)

Proof of Theorem mreexexlem3d
StepHypRef Expression
1 simpr 485 . . . 4 ((𝜑𝐹 = ∅) → 𝐹 = ∅)
2 mreexexlem2d.1 . . . . . . . . . 10 (𝜑𝐴 ∈ (Moore‘𝑋))
32adantr 481 . . . . . . . . 9 ((𝜑𝐺 = ∅) → 𝐴 ∈ (Moore‘𝑋))
4 mreexexlem2d.2 . . . . . . . . 9 𝑁 = (mrCls‘𝐴)
5 mreexexlem2d.3 . . . . . . . . 9 𝐼 = (mrInd‘𝐴)
6 mreexexlem2d.7 . . . . . . . . . . . 12 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
76adantr 481 . . . . . . . . . . 11 ((𝜑𝐺 = ∅) → 𝐹 ⊆ (𝑁‘(𝐺𝐻)))
8 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝐺 = ∅) → 𝐺 = ∅)
98uneq1d 4096 . . . . . . . . . . . . 13 ((𝜑𝐺 = ∅) → (𝐺𝐻) = (∅ ∪ 𝐻))
10 uncom 4087 . . . . . . . . . . . . . 14 (𝐻 ∪ ∅) = (∅ ∪ 𝐻)
11 un0 4324 . . . . . . . . . . . . . 14 (𝐻 ∪ ∅) = 𝐻
1210, 11eqtr3i 2768 . . . . . . . . . . . . 13 (∅ ∪ 𝐻) = 𝐻
139, 12eqtrdi 2794 . . . . . . . . . . . 12 ((𝜑𝐺 = ∅) → (𝐺𝐻) = 𝐻)
1413fveq2d 6778 . . . . . . . . . . 11 ((𝜑𝐺 = ∅) → (𝑁‘(𝐺𝐻)) = (𝑁𝐻))
157, 14sseqtrd 3961 . . . . . . . . . 10 ((𝜑𝐺 = ∅) → 𝐹 ⊆ (𝑁𝐻))
16 mreexexlem2d.8 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐻) ∈ 𝐼)
1716adantr 481 . . . . . . . . . . . . 13 ((𝜑𝐺 = ∅) → (𝐹𝐻) ∈ 𝐼)
185, 3, 17mrissd 17345 . . . . . . . . . . . 12 ((𝜑𝐺 = ∅) → (𝐹𝐻) ⊆ 𝑋)
1918unssbd 4122 . . . . . . . . . . 11 ((𝜑𝐺 = ∅) → 𝐻𝑋)
203, 4, 19mrcssidd 17334 . . . . . . . . . 10 ((𝜑𝐺 = ∅) → 𝐻 ⊆ (𝑁𝐻))
2115, 20unssd 4120 . . . . . . . . 9 ((𝜑𝐺 = ∅) → (𝐹𝐻) ⊆ (𝑁𝐻))
22 ssun2 4107 . . . . . . . . . 10 𝐻 ⊆ (𝐹𝐻)
2322a1i 11 . . . . . . . . 9 ((𝜑𝐺 = ∅) → 𝐻 ⊆ (𝐹𝐻))
243, 4, 5, 21, 23, 17mrissmrcd 17349 . . . . . . . 8 ((𝜑𝐺 = ∅) → (𝐹𝐻) = 𝐻)
25 ssequn1 4114 . . . . . . . 8 (𝐹𝐻 ↔ (𝐹𝐻) = 𝐻)
2624, 25sylibr 233 . . . . . . 7 ((𝜑𝐺 = ∅) → 𝐹𝐻)
27 mreexexlem2d.5 . . . . . . . 8 (𝜑𝐹 ⊆ (𝑋𝐻))
2827adantr 481 . . . . . . 7 ((𝜑𝐺 = ∅) → 𝐹 ⊆ (𝑋𝐻))
2926, 28ssind 4166 . . . . . 6 ((𝜑𝐺 = ∅) → 𝐹 ⊆ (𝐻 ∩ (𝑋𝐻)))
30 disjdif 4405 . . . . . 6 (𝐻 ∩ (𝑋𝐻)) = ∅
3129, 30sseqtrdi 3971 . . . . 5 ((𝜑𝐺 = ∅) → 𝐹 ⊆ ∅)
32 ss0b 4331 . . . . 5 (𝐹 ⊆ ∅ ↔ 𝐹 = ∅)
3331, 32sylib 217 . . . 4 ((𝜑𝐺 = ∅) → 𝐹 = ∅)
34 mreexexlem3d.9 . . . 4 (𝜑 → (𝐹 = ∅ ∨ 𝐺 = ∅))
351, 33, 34mpjaodan 956 . . 3 (𝜑𝐹 = ∅)
36 0elpw 5278 . . 3 ∅ ∈ 𝒫 𝐺
3735, 36eqeltrdi 2847 . 2 (𝜑𝐹 ∈ 𝒫 𝐺)
382elfvexd 6808 . . . 4 (𝜑𝑋 ∈ V)
3927difss2d 4069 . . . 4 (𝜑𝐹𝑋)
4038, 39ssexd 5248 . . 3 (𝜑𝐹 ∈ V)
41 enrefg 8772 . . 3 (𝐹 ∈ V → 𝐹𝐹)
4240, 41syl 17 . 2 (𝜑𝐹𝐹)
43 breq2 5078 . . . 4 (𝑖 = 𝐹 → (𝐹𝑖𝐹𝐹))
44 uneq1 4090 . . . . 5 (𝑖 = 𝐹 → (𝑖𝐻) = (𝐹𝐻))
4544eleq1d 2823 . . . 4 (𝑖 = 𝐹 → ((𝑖𝐻) ∈ 𝐼 ↔ (𝐹𝐻) ∈ 𝐼))
4643, 45anbi12d 631 . . 3 (𝑖 = 𝐹 → ((𝐹𝑖 ∧ (𝑖𝐻) ∈ 𝐼) ↔ (𝐹𝐹 ∧ (𝐹𝐻) ∈ 𝐼)))
4746rspcev 3561 . 2 ((𝐹 ∈ 𝒫 𝐺 ∧ (𝐹𝐹 ∧ (𝐹𝐻) ∈ 𝐼)) → ∃𝑖 ∈ 𝒫 𝐺(𝐹𝑖 ∧ (𝑖𝐻) ∈ 𝐼))
4837, 42, 16, 47syl12anc 834 1 (𝜑 → ∃𝑖 ∈ 𝒫 𝐺(𝐹𝑖 ∧ (𝑖𝐻) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  cfv 6433  cen 8730  Moorecmre 17291  mrClscmrc 17292  mrIndcmri 17293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-en 8734  df-mre 17295  df-mrc 17296  df-mri 17297
This theorem is referenced by:  mreexexlem4d  17356  mreexexd  17357
  Copyright terms: Public domain W3C validator