| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.) |
| Ref | Expression |
|---|---|
| ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| ineqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| ineqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ineqan12d.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | ineq12 4174 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-in 3918 |
| This theorem is referenced by: funprg 6554 funtpg 6555 funcnvpr 6562 funcnvqp 6564 fvun1 6934 fndmin 6999 ofrfvalg 7641 offval 7642 offval3 7940 fpar 8072 offsplitfpar 8075 fisn 9354 ixxin 13299 vdwmc 16925 fvcosymgeq 19343 cssincl 21630 inmbl 25476 iundisj2 25483 itg1addlem3 25632 fh1 31597 iundisj2f 32569 of0r 32652 iundisj2fi 32770 satffunlem1lem1 35382 satffunlem2lem1 35384 disjeccnvep 38265 disjecxrn 38368 br1cosscnvxrn 38458 |
| Copyright terms: Public domain | W3C validator |