MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ineqan12d Structured version   Visualization version   GIF version

Theorem ineqan12d 4185
Description: Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.)
Hypotheses
Ref Expression
ineq1d.1 (𝜑𝐴 = 𝐵)
ineqan12d.2 (𝜓𝐶 = 𝐷)
Assertion
Ref Expression
ineqan12d ((𝜑𝜓) → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem ineqan12d
StepHypRef Expression
1 ineq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ineqan12d.2 . 2 (𝜓𝐶 = 𝐷)
3 ineq12 4178 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3syl2an 596 1 ((𝜑𝜓) → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-in 3921
This theorem is referenced by:  funprg  6570  funtpg  6571  funcnvpr  6578  funcnvqp  6580  fvun1  6952  fndmin  7017  ofrfvalg  7661  offval  7662  offval3  7961  fpar  8095  offsplitfpar  8098  fisn  9378  ixxin  13323  vdwmc  16949  fvcosymgeq  19359  cssincl  21597  inmbl  25443  iundisj2  25450  itg1addlem3  25599  fh1  31547  iundisj2f  32519  of0r  32602  iundisj2fi  32720  satffunlem1lem1  35389  satffunlem2lem1  35391  disjeccnvep  38272  disjecxrn  38375  br1cosscnvxrn  38465
  Copyright terms: Public domain W3C validator