| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.) |
| Ref | Expression |
|---|---|
| ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| ineqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| ineqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ineqan12d.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | ineq12 4166 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-in 3910 |
| This theorem is referenced by: funprg 6536 funtpg 6537 funcnvpr 6544 funcnvqp 6546 fvun1 6914 fndmin 6979 ofrfvalg 7621 offval 7622 offval3 7917 fpar 8049 offsplitfpar 8052 fisn 9317 ixxin 13265 vdwmc 16890 fvcosymgeq 19308 cssincl 21595 inmbl 25441 iundisj2 25448 itg1addlem3 25597 fh1 31562 iundisj2f 32534 of0r 32622 iundisj2fi 32741 satffunlem1lem1 35385 satffunlem2lem1 35387 disjeccnvep 38268 disjecxrn 38371 br1cosscnvxrn 38461 |
| Copyright terms: Public domain | W3C validator |