| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.) |
| Ref | Expression |
|---|---|
| ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| ineqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| ineqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ineqan12d.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | ineq12 4181 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∩ cin 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-in 3924 |
| This theorem is referenced by: funprg 6573 funtpg 6574 funcnvpr 6581 funcnvqp 6583 fvun1 6955 fndmin 7020 ofrfvalg 7664 offval 7665 offval3 7964 fpar 8098 offsplitfpar 8101 fisn 9385 ixxin 13330 vdwmc 16956 fvcosymgeq 19366 cssincl 21604 inmbl 25450 iundisj2 25457 itg1addlem3 25606 fh1 31554 iundisj2f 32526 of0r 32609 iundisj2fi 32727 satffunlem1lem1 35396 satffunlem2lem1 35398 disjeccnvep 38279 disjecxrn 38382 br1cosscnvxrn 38472 |
| Copyright terms: Public domain | W3C validator |