MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ineqan12d Structured version   Visualization version   GIF version

Theorem ineqan12d 4197
Description: Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.)
Hypotheses
Ref Expression
ineq1d.1 (𝜑𝐴 = 𝐵)
ineqan12d.2 (𝜓𝐶 = 𝐷)
Assertion
Ref Expression
ineqan12d ((𝜑𝜓) → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem ineqan12d
StepHypRef Expression
1 ineq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ineqan12d.2 . 2 (𝜓𝐶 = 𝐷)
3 ineq12 4190 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3syl2an 596 1 ((𝜑𝜓) → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cin 3925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-in 3933
This theorem is referenced by:  funprg  6590  funtpg  6591  funcnvpr  6598  funcnvqp  6600  fvun1  6970  fndmin  7035  ofrfvalg  7679  offval  7680  offval3  7981  fpar  8115  offsplitfpar  8118  wfrlem4OLD  8326  fisn  9439  ixxin  13379  vdwmc  16998  fvcosymgeq  19410  cssincl  21648  inmbl  25495  iundisj2  25502  itg1addlem3  25651  fh1  31599  iundisj2f  32571  of0r  32656  iundisj2fi  32774  satffunlem1lem1  35424  satffunlem2lem1  35426  disjeccnvep  38302  disjecxrn  38407  br1cosscnvxrn  38492
  Copyright terms: Public domain W3C validator