MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ineqan12d Structured version   Visualization version   GIF version

Theorem ineqan12d 4243
Description: Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.)
Hypotheses
Ref Expression
ineq1d.1 (𝜑𝐴 = 𝐵)
ineqan12d.2 (𝜓𝐶 = 𝐷)
Assertion
Ref Expression
ineqan12d ((𝜑𝜓) → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem ineqan12d
StepHypRef Expression
1 ineq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ineqan12d.2 . 2 (𝜓𝐶 = 𝐷)
3 ineq12 4236 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3syl2an 595 1 ((𝜑𝜓) → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-in 3983
This theorem is referenced by:  funprg  6632  funtpg  6633  funcnvpr  6640  funcnvqp  6642  fvun1  7013  fndmin  7078  ofrfvalg  7722  offval  7723  offval3  8023  fpar  8157  offsplitfpar  8160  wfrlem4OLD  8368  fisn  9496  ixxin  13424  vdwmc  17025  fvcosymgeq  19471  cssincl  21729  inmbl  25596  iundisj2  25603  itg1addlem3  25752  fh1  31650  iundisj2f  32612  of0r  32696  iundisj2fi  32802  satffunlem1lem1  35370  satffunlem2lem1  35372  disjeccnvep  38240  disjecxrn  38345  br1cosscnvxrn  38430
  Copyright terms: Public domain W3C validator