| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.) |
| Ref | Expression |
|---|---|
| ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| ineqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| ineqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ineqan12d.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | ineq12 4190 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∩ cin 3925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-in 3933 |
| This theorem is referenced by: funprg 6590 funtpg 6591 funcnvpr 6598 funcnvqp 6600 fvun1 6970 fndmin 7035 ofrfvalg 7679 offval 7680 offval3 7981 fpar 8115 offsplitfpar 8118 wfrlem4OLD 8326 fisn 9439 ixxin 13379 vdwmc 16998 fvcosymgeq 19410 cssincl 21648 inmbl 25495 iundisj2 25502 itg1addlem3 25651 fh1 31599 iundisj2f 32571 of0r 32656 iundisj2fi 32774 satffunlem1lem1 35424 satffunlem2lem1 35426 disjeccnvep 38302 disjecxrn 38407 br1cosscnvxrn 38492 |
| Copyright terms: Public domain | W3C validator |