MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ineqan12d Structured version   Visualization version   GIF version

Theorem ineqan12d 4154
Description: Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.)
Hypotheses
Ref Expression
ineq1d.1 (𝜑𝐴 = 𝐵)
ineqan12d.2 (𝜓𝐶 = 𝐷)
Assertion
Ref Expression
ineqan12d ((𝜑𝜓) → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem ineqan12d
StepHypRef Expression
1 ineq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ineqan12d.2 . 2 (𝜓𝐶 = 𝐷)
3 ineq12 4147 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3syl2an 596 1 ((𝜑𝜓) → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  cin 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-in 3899
This theorem is referenced by:  funprg  6485  funtpg  6486  funcnvpr  6493  funcnvqp  6495  fvun1  6854  fndmin  6917  ofrfvalg  7533  offval  7534  offval3  7816  fpar  7945  offsplitfpar  7949  wfrlem4OLD  8132  fisn  9162  ixxin  13093  vdwmc  16675  fvcosymgeq  19033  cssincl  20889  inmbl  24702  iundisj2  24709  itg1addlem3  24858  fh1  29974  iundisj2f  30923  iundisj2fi  31112  satffunlem1lem1  33358  satffunlem2lem1  33360  br1cosscnvxrn  36586
  Copyright terms: Public domain W3C validator