Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.) |
Ref | Expression |
---|---|
ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ineqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ineqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ineqan12d.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | ineq12 4141 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-in 3894 |
This theorem is referenced by: funprg 6488 funtpg 6489 funcnvpr 6496 funcnvqp 6498 fvun1 6859 fndmin 6922 ofrfvalg 7541 offval 7542 offval3 7825 fpar 7956 offsplitfpar 7960 wfrlem4OLD 8143 fisn 9186 ixxin 13096 vdwmc 16679 fvcosymgeq 19037 cssincl 20893 inmbl 24706 iundisj2 24713 itg1addlem3 24862 fh1 29980 iundisj2f 30929 iundisj2fi 31118 satffunlem1lem1 33364 satffunlem2lem1 33366 br1cosscnvxrn 36592 |
Copyright terms: Public domain | W3C validator |