Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extep Structured version   Visualization version   GIF version

Theorem extep 37645
Description: Property of epsilon relation, see also extid 37673, extssr 37873 and the comment of df-ssr 37862. (Contributed by Peter Mazsa, 10-Jul-2019.)
Assertion
Ref Expression
extep ((𝐴𝑉𝐵𝑊) → ([𝐴] E = [𝐵] E ↔ 𝐴 = 𝐵))

Proof of Theorem extep
StepHypRef Expression
1 eccnvep 37644 . 2 (𝐴𝑉 → [𝐴] E = 𝐴)
2 eccnvep 37644 . 2 (𝐵𝑊 → [𝐵] E = 𝐵)
31, 2eqeqan12d 2738 1 ((𝐴𝑉𝐵𝑊) → ([𝐴] E = [𝐵] E ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098   E cep 5570  ccnv 5666  [cec 8698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-eprel 5571  df-xp 5673  df-rel 5674  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ec 8702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator