Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extep Structured version   Visualization version   GIF version

Theorem extep 38271
Description: Property of epsilon relation, see also extid 38298, extssr 38500 and the comment of df-ssr 38489. (Contributed by Peter Mazsa, 10-Jul-2019.)
Assertion
Ref Expression
extep ((𝐴𝑉𝐵𝑊) → ([𝐴] E = [𝐵] E ↔ 𝐴 = 𝐵))

Proof of Theorem extep
StepHypRef Expression
1 eccnvep 38270 . 2 (𝐴𝑉 → [𝐴] E = 𝐴)
2 eccnvep 38270 . 2 (𝐵𝑊 → [𝐵] E = 𝐵)
31, 2eqeqan12d 2743 1 ((𝐴𝑉𝐵𝑊) → ([𝐴] E = [𝐵] E ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   E cep 5537  ccnv 5637  [cec 8669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator