![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjecxrncnvep | Structured version Visualization version GIF version |
Description: Two ways of saying that cosets are disjoint, special case of disjecxrn 38345. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 25-Aug-2023.) |
Ref | Expression |
---|---|
disjecxrncnvep | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ ◡ E ) ∩ [𝐵](𝑅 ⋉ ◡ E )) = ∅ ↔ ((𝐴 ∩ 𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjecxrn 38345 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ ◡ E ) ∩ [𝐵](𝑅 ⋉ ◡ E )) = ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅))) | |
2 | orcom 869 | . . 3 ⊢ ((([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅) ↔ (([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)) | |
3 | 1, 2 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ ◡ E ) ∩ [𝐵](𝑅 ⋉ ◡ E )) = ∅ ↔ (([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))) |
4 | disjeccnvep 38240 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) | |
5 | 4 | orbi1d 915 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅) ↔ ((𝐴 ∩ 𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))) |
6 | 3, 5 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ ◡ E ) ∩ [𝐵](𝑅 ⋉ ◡ E )) = ∅ ↔ ((𝐴 ∩ 𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ∅c0 4352 E cep 5598 ◡ccnv 5699 [cec 8761 ⋉ cxrn 38134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-1st 8030 df-2nd 8031 df-ec 8765 df-xrn 38327 |
This theorem is referenced by: disjsuc2 38347 |
Copyright terms: Public domain | W3C validator |