Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjecxrncnvep Structured version   Visualization version   GIF version

Theorem disjecxrncnvep 38346
Description: Two ways of saying that cosets are disjoint, special case of disjecxrn 38345. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 25-Aug-2023.)
Assertion
Ref Expression
disjecxrncnvep ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅 E ) ∩ [𝐵](𝑅 E )) = ∅ ↔ ((𝐴𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)))

Proof of Theorem disjecxrncnvep
StepHypRef Expression
1 disjecxrn 38345 . . 3 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅 E ) ∩ [𝐵](𝑅 E )) = ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴] E ∩ [𝐵] E ) = ∅)))
2 orcom 869 . . 3 ((([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴] E ∩ [𝐵] E ) = ∅) ↔ (([𝐴] E ∩ [𝐵] E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))
31, 2bitrdi 287 . 2 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅 E ) ∩ [𝐵](𝑅 E )) = ∅ ↔ (([𝐴] E ∩ [𝐵] E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)))
4 disjeccnvep 38240 . . 3 ((𝐴𝑉𝐵𝑊) → (([𝐴] E ∩ [𝐵] E ) = ∅ ↔ (𝐴𝐵) = ∅))
54orbi1d 915 . 2 ((𝐴𝑉𝐵𝑊) → ((([𝐴] E ∩ [𝐵] E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅) ↔ ((𝐴𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)))
63, 5bitrd 279 1 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅 E ) ∩ [𝐵](𝑅 E )) = ∅ ↔ ((𝐴𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  cin 3975  c0 4352   E cep 5598  ccnv 5699  [cec 8761  cxrn 38134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-eprel 5599  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-1st 8030  df-2nd 8031  df-ec 8765  df-xrn 38327
This theorem is referenced by:  disjsuc2  38347
  Copyright terms: Public domain W3C validator