| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjecxrncnvep | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that cosets are disjoint, special case of disjecxrn 38446. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| disjecxrncnvep | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ ◡ E ) ∩ [𝐵](𝑅 ⋉ ◡ E )) = ∅ ↔ ((𝐴 ∩ 𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjecxrn 38446 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ ◡ E ) ∩ [𝐵](𝑅 ⋉ ◡ E )) = ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅))) | |
| 2 | orcom 870 | . . 3 ⊢ ((([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅) ↔ (([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)) | |
| 3 | 1, 2 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ ◡ E ) ∩ [𝐵](𝑅 ⋉ ◡ E )) = ∅ ↔ (([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))) |
| 4 | disjeccnvep 38332 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) | |
| 5 | 4 | orbi1d 916 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅) ↔ ((𝐴 ∩ 𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))) |
| 6 | 3, 5 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ ◡ E ) ∩ [𝐵](𝑅 ⋉ ◡ E )) = ∅ ↔ ((𝐴 ∩ 𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ∅c0 4280 E cep 5513 ◡ccnv 5613 [cec 8620 ⋉ cxrn 38224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-ec 8624 df-xrn 38414 |
| This theorem is referenced by: disjsuc2 38448 |
| Copyright terms: Public domain | W3C validator |