![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjecxrncnvep | Structured version Visualization version GIF version |
Description: Two ways of saying that cosets are disjoint, special case of disjecxrn 37798. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 25-Aug-2023.) |
Ref | Expression |
---|---|
disjecxrncnvep | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ ◡ E ) ∩ [𝐵](𝑅 ⋉ ◡ E )) = ∅ ↔ ((𝐴 ∩ 𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjecxrn 37798 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ ◡ E ) ∩ [𝐵](𝑅 ⋉ ◡ E )) = ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅))) | |
2 | orcom 869 | . . 3 ⊢ ((([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅) ↔ (([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)) | |
3 | 1, 2 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ ◡ E ) ∩ [𝐵](𝑅 ⋉ ◡ E )) = ∅ ↔ (([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))) |
4 | disjeccnvep 37691 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) | |
5 | 4 | orbi1d 915 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((([𝐴]◡ E ∩ [𝐵]◡ E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅) ↔ ((𝐴 ∩ 𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))) |
6 | 3, 5 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ ◡ E ) ∩ [𝐵](𝑅 ⋉ ◡ E )) = ∅ ↔ ((𝐴 ∩ 𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ∩ cin 3943 ∅c0 4318 E cep 5575 ◡ccnv 5671 [cec 8716 ⋉ cxrn 37582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-eprel 5576 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-1st 7987 df-2nd 7988 df-ec 8720 df-xrn 37780 |
This theorem is referenced by: disjsuc2 37800 |
Copyright terms: Public domain | W3C validator |