Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjecxrncnvep Structured version   Visualization version   GIF version

Theorem disjecxrncnvep 36604
Description: Two ways of saying that cosets are disjoint, special case of disjecxrn 36603. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 25-Aug-2023.)
Assertion
Ref Expression
disjecxrncnvep ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅 E ) ∩ [𝐵](𝑅 E )) = ∅ ↔ ((𝐴𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)))

Proof of Theorem disjecxrncnvep
StepHypRef Expression
1 disjecxrn 36603 . . 3 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅 E ) ∩ [𝐵](𝑅 E )) = ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴] E ∩ [𝐵] E ) = ∅)))
2 orcom 868 . . 3 ((([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴] E ∩ [𝐵] E ) = ∅) ↔ (([𝐴] E ∩ [𝐵] E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))
31, 2bitrdi 287 . 2 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅 E ) ∩ [𝐵](𝑅 E )) = ∅ ↔ (([𝐴] E ∩ [𝐵] E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)))
4 disjeccnvep 36494 . . 3 ((𝐴𝑉𝐵𝑊) → (([𝐴] E ∩ [𝐵] E ) = ∅ ↔ (𝐴𝐵) = ∅))
54orbi1d 915 . 2 ((𝐴𝑉𝐵𝑊) → ((([𝐴] E ∩ [𝐵] E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅) ↔ ((𝐴𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)))
63, 5bitrd 279 1 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅 E ) ∩ [𝐵](𝑅 E )) = ∅ ↔ ((𝐴𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 845   = wceq 1539  wcel 2104  cin 3891  c0 4262   E cep 5505  ccnv 5599  [cec 8527  cxrn 36380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-eprel 5506  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fo 6464  df-fv 6466  df-1st 7863  df-2nd 7864  df-ec 8531  df-xrn 36585
This theorem is referenced by:  disjsuc2  36605
  Copyright terms: Public domain W3C validator