Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjecxrncnvep Structured version   Visualization version   GIF version

Theorem disjecxrncnvep 38383
Description: Two ways of saying that cosets are disjoint, special case of disjecxrn 38382. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 25-Aug-2023.)
Assertion
Ref Expression
disjecxrncnvep ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅 E ) ∩ [𝐵](𝑅 E )) = ∅ ↔ ((𝐴𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)))

Proof of Theorem disjecxrncnvep
StepHypRef Expression
1 disjecxrn 38382 . . 3 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅 E ) ∩ [𝐵](𝑅 E )) = ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴] E ∩ [𝐵] E ) = ∅)))
2 orcom 870 . . 3 ((([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴] E ∩ [𝐵] E ) = ∅) ↔ (([𝐴] E ∩ [𝐵] E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))
31, 2bitrdi 287 . 2 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅 E ) ∩ [𝐵](𝑅 E )) = ∅ ↔ (([𝐴] E ∩ [𝐵] E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)))
4 disjeccnvep 38279 . . 3 ((𝐴𝑉𝐵𝑊) → (([𝐴] E ∩ [𝐵] E ) = ∅ ↔ (𝐴𝐵) = ∅))
54orbi1d 916 . 2 ((𝐴𝑉𝐵𝑊) → ((([𝐴] E ∩ [𝐵] E ) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅) ↔ ((𝐴𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)))
63, 5bitrd 279 1 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅 E ) ∩ [𝐵](𝑅 E )) = ∅ ↔ ((𝐴𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  cin 3916  c0 4299   E cep 5540  ccnv 5640  [cec 8672  cxrn 38175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-1st 7971  df-2nd 7972  df-ec 8676  df-xrn 38360
This theorem is referenced by:  disjsuc2  38384
  Copyright terms: Public domain W3C validator