Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjssd | Structured version Visualization version GIF version |
Description: Subclass theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
Ref | Expression |
---|---|
disjssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
disjssd | ⊢ (𝜑 → ( Disj 𝐵 → Disj 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | disjss 36438 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( Disj 𝐵 → Disj 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ( Disj 𝐵 → Disj 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3860 Disj wdisjALTV 35961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-opab 5099 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-coss 36133 df-cnvrefrel 36239 df-funALTV 36389 df-disjALTV 36412 |
This theorem is referenced by: disjeq 36441 eldisjss 36445 |
Copyright terms: Public domain | W3C validator |