![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjssi | Structured version Visualization version GIF version |
Description: Subclass theorem for disjoints, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
Ref | Expression |
---|---|
disjssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
disjssi | ⊢ ( Disj 𝐵 → Disj 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | disjss 37904 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( Disj 𝐵 → Disj 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ( Disj 𝐵 → Disj 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3947 Disj wdisjALTV 37380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-coss 37584 df-cnvrefrel 37700 df-funALTV 37855 df-disjALTV 37878 |
This theorem is referenced by: disjimres 37923 disjimin 37924 |
Copyright terms: Public domain | W3C validator |