Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjimres | Structured version Visualization version GIF version |
Description: Disjointness condition for restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
Ref | Expression |
---|---|
disjimres | ⊢ ( Disj 𝑅 → Disj (𝑅 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 5854 | . 2 ⊢ (𝑅 ↾ 𝐴) ⊆ 𝑅 | |
2 | 1 | disjssi 36441 | 1 ⊢ ( Disj 𝑅 → Disj (𝑅 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↾ cres 5531 Disj wdisjALTV 35963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pr 5303 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-br 5038 df-opab 5100 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-coss 36135 df-cnvrefrel 36241 df-funALTV 36391 df-disjALTV 36414 |
This theorem is referenced by: disjiminres 36458 disjimxrnres 36459 disjALTVidres 36462 |
Copyright terms: Public domain | W3C validator |