Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smffmptf Structured version   Visualization version   GIF version

Theorem smffmptf 46725
Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
smffmptf.x 𝑥𝜑
smffmptf.a 𝑥𝐴
smffmptf.s (𝜑𝑆 ∈ SAlg)
smffmptf.b ((𝜑𝑥𝐴) → 𝐵𝑉)
smffmptf.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
Assertion
Ref Expression
smffmptf (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)

Proof of Theorem smffmptf
StepHypRef Expression
1 smffmptf.s . . 3 (𝜑𝑆 ∈ SAlg)
2 smffmptf.m . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
3 eqid 2740 . . 3 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
41, 2, 3smff 46653 . 2 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ)
5 smffmptf.x . . . . 5 𝑥𝜑
6 smffmptf.a . . . . 5 𝑥𝐴
7 smffmptf.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
85, 6, 7dmmpt1 45178 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
98eqcomd 2746 . . 3 (𝜑𝐴 = dom (𝑥𝐴𝐵))
109feq2d 6733 . 2 (𝜑 → ((𝑥𝐴𝐵):𝐴⟶ℝ ↔ (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ))
114, 10mpbird 257 1 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1781  wcel 2108  wnfc 2893  cmpt 5249  dom cdm 5700  wf 6569  cfv 6573  cr 11183  SAlgcsalg 46229  SMblFncsmblfn 46616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ioo 13411  df-ico 13413  df-smblfn 46617
This theorem is referenced by:  smffmpt  46726  smfdivdmmbl  46759
  Copyright terms: Public domain W3C validator