Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smffmptf | Structured version Visualization version GIF version |
Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
smffmptf.x | ⊢ Ⅎ𝑥𝜑 |
smffmptf.a | ⊢ Ⅎ𝑥𝐴 |
smffmptf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smffmptf.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
smffmptf.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
Ref | Expression |
---|---|
smffmptf | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smffmptf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
2 | smffmptf.m | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
3 | eqid 2736 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 1, 2, 3 | smff 44526 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℝ) |
5 | smffmptf.x | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
6 | smffmptf.a | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
7 | smffmptf.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
8 | 5, 6, 7 | dmmpt1 43063 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
9 | 8 | eqcomd 2742 | . . 3 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
10 | 9 | feq2d 6623 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℝ)) |
11 | 4, 10 | mpbird 256 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2884 ↦ cmpt 5169 dom cdm 5607 ⟶wf 6461 ‘cfv 6465 ℝcr 10949 SAlgcsalg 44104 SMblFncsmblfn 44489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-pre-lttri 11024 ax-pre-lttrn 11025 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-po 5520 df-so 5521 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-1st 7877 df-2nd 7878 df-er 8547 df-pm 8667 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-ioo 13162 df-ico 13164 df-smblfn 44490 |
This theorem is referenced by: smffmpt 44599 smfdivdmmbl 44632 |
Copyright terms: Public domain | W3C validator |