Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smffmptf Structured version   Visualization version   GIF version

Theorem smffmptf 46461
Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
smffmptf.x 𝑥𝜑
smffmptf.a 𝑥𝐴
smffmptf.s (𝜑𝑆 ∈ SAlg)
smffmptf.b ((𝜑𝑥𝐴) → 𝐵𝑉)
smffmptf.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
Assertion
Ref Expression
smffmptf (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)

Proof of Theorem smffmptf
StepHypRef Expression
1 smffmptf.s . . 3 (𝜑𝑆 ∈ SAlg)
2 smffmptf.m . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
3 eqid 2726 . . 3 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
41, 2, 3smff 46389 . 2 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ)
5 smffmptf.x . . . . 5 𝑥𝜑
6 smffmptf.a . . . . 5 𝑥𝐴
7 smffmptf.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
85, 6, 7dmmpt1 44914 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
98eqcomd 2732 . . 3 (𝜑𝐴 = dom (𝑥𝐴𝐵))
109feq2d 6706 . 2 (𝜑 → ((𝑥𝐴𝐵):𝐴⟶ℝ ↔ (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ))
114, 10mpbird 256 1 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wnf 1778  wcel 2099  wnfc 2876  cmpt 5228  dom cdm 5674  wf 6542  cfv 6546  cr 11148  SAlgcsalg 45965  SMblFncsmblfn 46352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-pre-lttri 11223  ax-pre-lttrn 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-po 5586  df-so 5587  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-er 8726  df-pm 8850  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-ioo 13376  df-ico 13378  df-smblfn 46353
This theorem is referenced by:  smffmpt  46462  smfdivdmmbl  46495
  Copyright terms: Public domain W3C validator