![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smffmptf | Structured version Visualization version GIF version |
Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
smffmptf.x | ⊢ Ⅎ𝑥𝜑 |
smffmptf.a | ⊢ Ⅎ𝑥𝐴 |
smffmptf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smffmptf.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
smffmptf.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
Ref | Expression |
---|---|
smffmptf | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smffmptf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
2 | smffmptf.m | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
3 | eqid 2726 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 1, 2, 3 | smff 46389 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℝ) |
5 | smffmptf.x | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
6 | smffmptf.a | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
7 | smffmptf.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
8 | 5, 6, 7 | dmmpt1 44914 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
9 | 8 | eqcomd 2732 | . . 3 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
10 | 9 | feq2d 6706 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℝ)) |
11 | 4, 10 | mpbird 256 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 Ⅎwnf 1778 ∈ wcel 2099 Ⅎwnfc 2876 ↦ cmpt 5228 dom cdm 5674 ⟶wf 6542 ‘cfv 6546 ℝcr 11148 SAlgcsalg 45965 SMblFncsmblfn 46352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-pre-lttri 11223 ax-pre-lttrn 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-er 8726 df-pm 8850 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-ioo 13376 df-ico 13378 df-smblfn 46353 |
This theorem is referenced by: smffmpt 46462 smfdivdmmbl 46495 |
Copyright terms: Public domain | W3C validator |