Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqseqim Structured version   Visualization version   GIF version

Theorem dmqseqim 38638
Description: If the domain quotient of a relation is equal to the class 𝐴, then the range of the relation is the union of the class. (Contributed by Peter Mazsa, 29-Dec-2021.)
Assertion
Ref Expression
dmqseqim (𝑅𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → ran 𝑅 = 𝐴)))

Proof of Theorem dmqseqim
StepHypRef Expression
1 unieq 4923 . . 3 ((dom 𝑅 / 𝑅) = 𝐴 (dom 𝑅 / 𝑅) = 𝐴)
2 unidmqseq 38637 . . . 4 (𝑅𝑉 → (Rel 𝑅 → ( (dom 𝑅 / 𝑅) = 𝐴 ↔ ran 𝑅 = 𝐴)))
32imp 406 . . 3 ((𝑅𝑉 ∧ Rel 𝑅) → ( (dom 𝑅 / 𝑅) = 𝐴 ↔ ran 𝑅 = 𝐴))
41, 3imbitrid 244 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → ((dom 𝑅 / 𝑅) = 𝐴 → ran 𝑅 = 𝐴))
54ex 412 1 (𝑅𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → ran 𝑅 = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106   cuni 4912  dom cdm 5689  ran crn 5690  Rel wrel 5694   / cqs 8743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ec 8746  df-qs 8750
This theorem is referenced by:  dmqseqim2  38639
  Copyright terms: Public domain W3C validator