| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmqseqim | Structured version Visualization version GIF version | ||
| Description: If the domain quotient of a relation is equal to the class 𝐴, then the range of the relation is the union of the class. (Contributed by Peter Mazsa, 29-Dec-2021.) |
| Ref | Expression |
|---|---|
| dmqseqim | ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → ran 𝑅 = ∪ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4872 | . . 3 ⊢ ((dom 𝑅 / 𝑅) = 𝐴 → ∪ (dom 𝑅 / 𝑅) = ∪ 𝐴) | |
| 2 | unidmqseq 38632 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → (∪ (dom 𝑅 / 𝑅) = ∪ 𝐴 ↔ ran 𝑅 = ∪ 𝐴))) | |
| 3 | 2 | imp 406 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (∪ (dom 𝑅 / 𝑅) = ∪ 𝐴 ↔ ran 𝑅 = ∪ 𝐴)) |
| 4 | 1, 3 | imbitrid 244 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ((dom 𝑅 / 𝑅) = 𝐴 → ran 𝑅 = ∪ 𝐴)) |
| 5 | 4 | ex 412 | 1 ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → ran 𝑅 = ∪ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cuni 4861 dom cdm 5623 ran crn 5624 Rel wrel 5628 / cqs 8631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 df-qs 8638 |
| This theorem is referenced by: dmqseqim2 38634 |
| Copyright terms: Public domain | W3C validator |