![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unidmqseq | Structured version Visualization version GIF version |
Description: The union of the domain quotient of a relation is equal to the class 𝐴 if and only if the range is equal to it as well. (Contributed by Peter Mazsa, 21-Apr-2019.) (Revised by Peter Mazsa, 28-Dec-2021.) |
Ref | Expression |
---|---|
unidmqseq | ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → (∪ (dom 𝑅 / 𝑅) = 𝐴 ↔ ran 𝑅 = 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unidmqs 37827 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ∪ (dom 𝑅 / 𝑅) = ran 𝑅)) | |
2 | 1 | imp 405 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∪ (dom 𝑅 / 𝑅) = ran 𝑅) |
3 | 2 | eqeq1d 2732 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (∪ (dom 𝑅 / 𝑅) = 𝐴 ↔ ran 𝑅 = 𝐴)) |
4 | 3 | ex 411 | 1 ⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → (∪ (dom 𝑅 / 𝑅) = 𝐴 ↔ ran 𝑅 = 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∪ cuni 4907 dom cdm 5675 ran crn 5676 Rel wrel 5680 / cqs 8704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ec 8707 df-qs 8711 |
This theorem is referenced by: dmqseqim 37829 |
Copyright terms: Public domain | W3C validator |