Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unidmqseq Structured version   Visualization version   GIF version

Theorem unidmqseq 36694
Description: The union of the domain quotient of a relation is equal to the class 𝐴 if and only if the range is equal to it as well. (Contributed by Peter Mazsa, 21-Apr-2019.) (Revised by Peter Mazsa, 28-Dec-2021.)
Assertion
Ref Expression
unidmqseq (𝑅𝑉 → (Rel 𝑅 → ( (dom 𝑅 / 𝑅) = 𝐴 ↔ ran 𝑅 = 𝐴)))

Proof of Theorem unidmqseq
StepHypRef Expression
1 unidmqs 36693 . . . 4 (𝑅𝑉 → (Rel 𝑅 (dom 𝑅 / 𝑅) = ran 𝑅))
21imp 406 . . 3 ((𝑅𝑉 ∧ Rel 𝑅) → (dom 𝑅 / 𝑅) = ran 𝑅)
32eqeq1d 2740 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → ( (dom 𝑅 / 𝑅) = 𝐴 ↔ ran 𝑅 = 𝐴))
43ex 412 1 (𝑅𝑉 → (Rel 𝑅 → ( (dom 𝑅 / 𝑅) = 𝐴 ↔ ran 𝑅 = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108   cuni 4836  dom cdm 5580  ran crn 5581  Rel wrel 5585   / cqs 8455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458  df-qs 8462
This theorem is referenced by:  dmqseqim  36695
  Copyright terms: Public domain W3C validator