Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleccnvep Structured version   Visualization version   GIF version

Theorem eleccnvep 36385
Description: Elementhood in the converse epsilon coset of 𝐴 is elementhood in 𝐴. (Contributed by Peter Mazsa, 27-Jan-2019.)
Assertion
Ref Expression
eleccnvep (𝐴𝑉 → (𝐵 ∈ [𝐴] E ↔ 𝐵𝐴))

Proof of Theorem eleccnvep
StepHypRef Expression
1 relcnv 6006 . . 3 Rel E
2 relelec 8506 . . 3 (Rel E → (𝐵 ∈ [𝐴] E ↔ 𝐴 E 𝐵))
31, 2ax-mp 5 . 2 (𝐵 ∈ [𝐴] E ↔ 𝐴 E 𝐵)
4 brcnvep 36373 . 2 (𝐴𝑉 → (𝐴 E 𝐵𝐵𝐴))
53, 4syl5bb 282 1 (𝐴𝑉 → (𝐵 ∈ [𝐴] E ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2107   class class class wbr 5075   E cep 5490  ccnv 5584  Rel wrel 5590  [cec 8459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3429  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-br 5076  df-opab 5138  df-eprel 5491  df-xp 5591  df-rel 5592  df-cnv 5593  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-ec 8463
This theorem is referenced by:  eccnvep  36386
  Copyright terms: Public domain W3C validator