Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleccnvep Structured version   Visualization version   GIF version

Theorem eleccnvep 37605
Description: Elementhood in the converse epsilon coset of 𝐴 is elementhood in 𝐴. (Contributed by Peter Mazsa, 27-Jan-2019.)
Assertion
Ref Expression
eleccnvep (𝐴𝑉 → (𝐵 ∈ [𝐴] E ↔ 𝐵𝐴))

Proof of Theorem eleccnvep
StepHypRef Expression
1 relcnv 6093 . . 3 Rel E
2 relelec 8743 . . 3 (Rel E → (𝐵 ∈ [𝐴] E ↔ 𝐴 E 𝐵))
31, 2ax-mp 5 . 2 (𝐵 ∈ [𝐴] E ↔ 𝐴 E 𝐵)
4 brcnvep 37589 . 2 (𝐴𝑉 → (𝐴 E 𝐵𝐵𝐴))
53, 4bitrid 283 1 (𝐴𝑉 → (𝐵 ∈ [𝐴] E ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098   class class class wbr 5138   E cep 5569  ccnv 5665  Rel wrel 5671  [cec 8696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-eprel 5570  df-xp 5672  df-rel 5673  df-cnv 5674  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-ec 8700
This theorem is referenced by:  eccnvep  37606
  Copyright terms: Public domain W3C validator