Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleccnvep Structured version   Visualization version   GIF version

Theorem eleccnvep 38265
Description: Elementhood in the converse epsilon coset of 𝐴 is elementhood in 𝐴. (Contributed by Peter Mazsa, 27-Jan-2019.)
Assertion
Ref Expression
eleccnvep (𝐴𝑉 → (𝐵 ∈ [𝐴] E ↔ 𝐵𝐴))

Proof of Theorem eleccnvep
StepHypRef Expression
1 relcnv 6055 . . 3 Rel E
2 relelec 8672 . . 3 (Rel E → (𝐵 ∈ [𝐴] E ↔ 𝐴 E 𝐵))
31, 2ax-mp 5 . 2 (𝐵 ∈ [𝐴] E ↔ 𝐴 E 𝐵)
4 brcnvep 38250 . 2 (𝐴𝑉 → (𝐴 E 𝐵𝐵𝐴))
53, 4bitrid 283 1 (𝐴𝑉 → (𝐵 ∈ [𝐴] E ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109   class class class wbr 5092   E cep 5518  ccnv 5618  Rel wrel 5624  [cec 8623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8627
This theorem is referenced by:  eccnvep  38266
  Copyright terms: Public domain W3C validator