| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eleccnvep | Structured version Visualization version GIF version | ||
| Description: Elementhood in the converse epsilon coset of 𝐴 is elementhood in 𝐴. (Contributed by Peter Mazsa, 27-Jan-2019.) |
| Ref | Expression |
|---|---|
| eleccnvep | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ [𝐴]◡ E ↔ 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6102 | . . 3 ⊢ Rel ◡ E | |
| 2 | relelec 8773 | . . 3 ⊢ (Rel ◡ E → (𝐵 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝐵) |
| 4 | brcnvep 38200 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝐵 ↔ 𝐵 ∈ 𝐴)) | |
| 5 | 3, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ [𝐴]◡ E ↔ 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 class class class wbr 5123 E cep 5563 ◡ccnv 5664 Rel wrel 5670 [cec 8724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-eprel 5564 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ec 8728 |
| This theorem is referenced by: eccnvep 38217 |
| Copyright terms: Public domain | W3C validator |