| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eleccnvep | Structured version Visualization version GIF version | ||
| Description: Elementhood in the converse epsilon coset of 𝐴 is elementhood in 𝐴. (Contributed by Peter Mazsa, 27-Jan-2019.) |
| Ref | Expression |
|---|---|
| eleccnvep | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ [𝐴]◡ E ↔ 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6052 | . . 3 ⊢ Rel ◡ E | |
| 2 | relelec 8669 | . . 3 ⊢ (Rel ◡ E → (𝐵 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝐵) |
| 4 | brcnvep 38312 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝐵 ↔ 𝐵 ∈ 𝐴)) | |
| 5 | 3, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ [𝐴]◡ E ↔ 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 class class class wbr 5089 E cep 5513 ◡ccnv 5613 Rel wrel 5619 [cec 8620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 |
| This theorem is referenced by: eccnvep 38330 |
| Copyright terms: Public domain | W3C validator |