Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eleccnvep | Structured version Visualization version GIF version |
Description: Elementhood in the converse epsilon coset of 𝐴 is elementhood in 𝐴. (Contributed by Peter Mazsa, 27-Jan-2019.) |
Ref | Expression |
---|---|
eleccnvep | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ [𝐴]◡ E ↔ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6006 | . . 3 ⊢ Rel ◡ E | |
2 | relelec 8506 | . . 3 ⊢ (Rel ◡ E → (𝐵 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝐵)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝐵) |
4 | brcnvep 36373 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝐵 ↔ 𝐵 ∈ 𝐴)) | |
5 | 3, 4 | syl5bb 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ [𝐴]◡ E ↔ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2107 class class class wbr 5075 E cep 5490 ◡ccnv 5584 Rel wrel 5590 [cec 8459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3429 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-br 5076 df-opab 5138 df-eprel 5491 df-xp 5591 df-rel 5592 df-cnv 5593 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-ec 8463 |
This theorem is referenced by: eccnvep 36386 |
Copyright terms: Public domain | W3C validator |