Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eleccnvep | Structured version Visualization version GIF version |
Description: Elementhood in the converse epsilon coset of 𝐴 is elementhood in 𝐴. (Contributed by Peter Mazsa, 27-Jan-2019.) |
Ref | Expression |
---|---|
eleccnvep | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ [𝐴]◡ E ↔ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6012 | . . 3 ⊢ Rel ◡ E | |
2 | relelec 8543 | . . 3 ⊢ (Rel ◡ E → (𝐵 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝐵)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ [𝐴]◡ E ↔ 𝐴◡ E 𝐵) |
4 | brcnvep 36404 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ E 𝐵 ↔ 𝐵 ∈ 𝐴)) | |
5 | 3, 4 | syl5bb 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ [𝐴]◡ E ↔ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 class class class wbr 5074 E cep 5494 ◡ccnv 5588 Rel wrel 5594 [cec 8496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 |
This theorem is referenced by: eccnvep 36417 |
Copyright terms: Public domain | W3C validator |