| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcnsrec | Structured version Visualization version GIF version | ||
| Description: Technical trick to permit
re-use of some equivalence class lemmas for
operation laws. The trick involves ecid 8796,
which shows that the coset of
the converse membership relation (which is not an equivalence relation)
leaves a set unchanged. See also dfcnqs 11156.
Note: This is the last lemma (from which the axioms will be derived) in the construction of real and complex numbers. The construction starts at cnpi 10858. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulcnsrec | ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E · [〈𝐶, 𝐷〉]◡ E ) = [〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉]◡ E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcnsr 11150 | . 2 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 · 〈𝐶, 𝐷〉) = 〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉) | |
| 2 | opex 5439 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 3 | 2 | ecid 8796 | . . 3 ⊢ [〈𝐴, 𝐵〉]◡ E = 〈𝐴, 𝐵〉 |
| 4 | opex 5439 | . . . 4 ⊢ 〈𝐶, 𝐷〉 ∈ V | |
| 5 | 4 | ecid 8796 | . . 3 ⊢ [〈𝐶, 𝐷〉]◡ E = 〈𝐶, 𝐷〉 |
| 6 | 3, 5 | oveq12i 7417 | . 2 ⊢ ([〈𝐴, 𝐵〉]◡ E · [〈𝐶, 𝐷〉]◡ E ) = (〈𝐴, 𝐵〉 · 〈𝐶, 𝐷〉) |
| 7 | opex 5439 | . . 3 ⊢ 〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉 ∈ V | |
| 8 | 7 | ecid 8796 | . 2 ⊢ [〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉]◡ E = 〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉 |
| 9 | 1, 6, 8 | 3eqtr4g 2795 | 1 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E · [〈𝐶, 𝐷〉]◡ E ) = [〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉]◡ E ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 E cep 5552 ◡ccnv 5653 (class class class)co 7405 [cec 8717 Rcnr 10879 -1Rcm1r 10882 +R cplr 10883 ·R cmr 10884 · cmul 11134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-ec 8721 df-c 11135 df-mul 11141 |
| This theorem is referenced by: axmulcom 11169 axmulass 11171 axdistr 11172 |
| Copyright terms: Public domain | W3C validator |