MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcnsrec Structured version   Visualization version   GIF version

Theorem mulcnsrec 11141
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecid 8778, which shows that the coset of the converse membership relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 11139.

Note: This is the last lemma (from which the axioms will be derived) in the construction of real and complex numbers. The construction starts at cnpi 10841. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.)

Assertion
Ref Expression
mulcnsrec (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E )

Proof of Theorem mulcnsrec
StepHypRef Expression
1 mulcnsr 11133 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
2 opex 5464 . . . 4 𝐴, 𝐵⟩ ∈ V
32ecid 8778 . . 3 [⟨𝐴, 𝐵⟩] E = ⟨𝐴, 𝐵
4 opex 5464 . . . 4 𝐶, 𝐷⟩ ∈ V
54ecid 8778 . . 3 [⟨𝐶, 𝐷⟩] E = ⟨𝐶, 𝐷
63, 5oveq12i 7423 . 2 ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩)
7 opex 5464 . . 3 ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ V
87ecid 8778 . 2 [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩
91, 6, 83eqtr4g 2797 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cop 4634   E cep 5579  ccnv 5675  (class class class)co 7411  [cec 8703  Rcnr 10862  -1Rcm1r 10865   +R cplr 10866   ·R cmr 10867   · cmul 11117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-eprel 5580  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-oprab 7415  df-ec 8707  df-c 11118  df-mul 11124
This theorem is referenced by:  axmulcom  11152  axmulass  11154  axdistr  11155
  Copyright terms: Public domain W3C validator