Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulcnsrec | Structured version Visualization version GIF version |
Description: Technical trick to permit
re-use of some equivalence class lemmas for
operation laws. The trick involves ecid 8591,
which shows that the coset of
the converse membership relation (which is not an equivalence relation)
leaves a set unchanged. See also dfcnqs 10926.
Note: This is the last lemma (from which the axioms will be derived) in the construction of real and complex numbers. The construction starts at cnpi 10628. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulcnsrec | ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E · [〈𝐶, 𝐷〉]◡ E ) = [〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉]◡ E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcnsr 10920 | . 2 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 · 〈𝐶, 𝐷〉) = 〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉) | |
2 | opex 5382 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | ecid 8591 | . . 3 ⊢ [〈𝐴, 𝐵〉]◡ E = 〈𝐴, 𝐵〉 |
4 | opex 5382 | . . . 4 ⊢ 〈𝐶, 𝐷〉 ∈ V | |
5 | 4 | ecid 8591 | . . 3 ⊢ [〈𝐶, 𝐷〉]◡ E = 〈𝐶, 𝐷〉 |
6 | 3, 5 | oveq12i 7307 | . 2 ⊢ ([〈𝐴, 𝐵〉]◡ E · [〈𝐶, 𝐷〉]◡ E ) = (〈𝐴, 𝐵〉 · 〈𝐶, 𝐷〉) |
7 | opex 5382 | . . 3 ⊢ 〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉 ∈ V | |
8 | 7 | ecid 8591 | . 2 ⊢ [〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉]◡ E = 〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉 |
9 | 1, 6, 8 | 3eqtr4g 2798 | 1 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E · [〈𝐶, 𝐷〉]◡ E ) = [〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉]◡ E ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 〈cop 4570 E cep 5496 ◡ccnv 5590 (class class class)co 7295 [cec 8516 Rcnr 10649 -1Rcm1r 10652 +R cplr 10653 ·R cmr 10654 · cmul 10904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-id 5491 df-eprel 5497 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fv 6455 df-ov 7298 df-oprab 7299 df-ec 8520 df-c 10905 df-mul 10911 |
This theorem is referenced by: axmulcom 10939 axmulass 10941 axdistr 10942 |
Copyright terms: Public domain | W3C validator |