| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el1o | Structured version Visualization version GIF version | ||
| Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| el1o | ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8487 | . . 3 ⊢ 1o = {∅} | |
| 2 | 1 | eleq2i 2826 | . 2 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ {∅}) |
| 3 | 0ex 5277 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 3 | elsn2 4641 | . 2 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∅c0 4308 {csn 4601 1oc1o 8473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-nul 4309 df-sn 4602 df-suc 6358 df-1o 8480 |
| This theorem is referenced by: ord1eln01 8508 ord2eln012 8509 0lt1o 8516 oelim2 8607 oeeulem 8613 oaabs2 8661 cantnff 9688 cnfcom3lem 9717 cfsuc 10271 pf1ind 22293 mavmul0 22490 cramer0 22628 cantnfresb 43348 omabs2 43356 omcl3g 43358 f1omo 48868 isinito3 49385 |
| Copyright terms: Public domain | W3C validator |