| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el1o | Structured version Visualization version GIF version | ||
| Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| el1o | ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8402 | . . 3 ⊢ 1o = {∅} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ {∅}) |
| 3 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 3 | elsn2 4619 | . 2 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∅c0 4286 {csn 4579 1oc1o 8388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-un 3910 df-nul 4287 df-sn 4580 df-suc 6317 df-1o 8395 |
| This theorem is referenced by: ord1eln01 8421 ord2eln012 8422 0lt1o 8429 oelim2 8520 oeeulem 8526 oaabs2 8574 cantnff 9589 cnfcom3lem 9618 cfsuc 10170 pf1ind 22259 mavmul0 22456 cramer0 22594 cantnfresb 43317 omabs2 43325 omcl3g 43327 f1omoOLD 48898 isinito3 49505 |
| Copyright terms: Public domain | W3C validator |