MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el1o Structured version   Visualization version   GIF version

Theorem el1o 8490
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o (𝐴 ∈ 1o𝐴 = ∅)

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 8468 . . 3 1o = {∅}
21eleq2i 2817 . 2 (𝐴 ∈ 1o𝐴 ∈ {∅})
3 0ex 5297 . . 3 ∅ ∈ V
43elsn2 4659 . 2 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
52, 4bitri 275 1 (𝐴 ∈ 1o𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wcel 2098  c0 4314  {csn 4620  1oc1o 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-nul 5296
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-dif 3943  df-un 3945  df-nul 4315  df-sn 4621  df-suc 6360  df-1o 8461
This theorem is referenced by:  ord1eln01  8491  ord2eln012  8492  0lt1o  8499  oelim2  8590  oeeulem  8596  oaabs2  8644  cantnff  9665  cnfcom3lem  9694  cfsuc  10248  pf1ind  22196  mavmul0  22376  cramer0  22514  cantnfresb  42563  omabs2  42571  omcl3g  42573  f1omo  47715
  Copyright terms: Public domain W3C validator