| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el1o | Structured version Visualization version GIF version | ||
| Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| el1o | ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8387 | . . 3 ⊢ 1o = {∅} | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ {∅}) |
| 3 | 0ex 5240 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 3 | elsn2 4613 | . 2 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∅c0 4278 {csn 4571 1oc1o 8373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-nul 4279 df-sn 4572 df-suc 6307 df-1o 8380 |
| This theorem is referenced by: ord1eln01 8406 ord2eln012 8407 0lt1o 8414 oelim2 8505 oeeulem 8511 oaabs2 8559 cantnff 9559 cnfcom3lem 9588 cfsuc 10143 pf1ind 22265 mavmul0 22462 cramer0 22600 cantnfresb 43357 omabs2 43365 omcl3g 43367 f1omoOLD 48925 isinito3 49532 |
| Copyright terms: Public domain | W3C validator |