| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el1o | Structured version Visualization version GIF version | ||
| Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| el1o | ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8418 | . . 3 ⊢ 1o = {∅} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ {∅}) |
| 3 | 0ex 5257 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 3 | elsn2 4625 | . 2 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∅c0 4292 {csn 4585 1oc1o 8404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-un 3916 df-nul 4293 df-sn 4586 df-suc 6326 df-1o 8411 |
| This theorem is referenced by: ord1eln01 8437 ord2eln012 8438 0lt1o 8445 oelim2 8536 oeeulem 8542 oaabs2 8590 cantnff 9603 cnfcom3lem 9632 cfsuc 10186 pf1ind 22218 mavmul0 22415 cramer0 22553 cantnfresb 43286 omabs2 43294 omcl3g 43296 f1omoOLD 48855 isinito3 49462 |
| Copyright terms: Public domain | W3C validator |