| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el1o | Structured version Visualization version GIF version | ||
| Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| el1o | ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8401 | . . 3 ⊢ 1o = {∅} | |
| 2 | 1 | eleq2i 2825 | . 2 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ {∅}) |
| 3 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 3 | elsn2 4619 | . 2 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∅c0 4282 {csn 4577 1oc1o 8387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-un 3903 df-nul 4283 df-sn 4578 df-suc 6320 df-1o 8394 |
| This theorem is referenced by: ord1eln01 8420 ord2eln012 8421 0lt1o 8428 oelim2 8519 oeeulem 8525 oaabs2 8573 cantnff 9575 cnfcom3lem 9604 cfsuc 10159 pf1ind 22290 mavmul0 22487 cramer0 22625 cantnfresb 43481 omabs2 43489 omcl3g 43491 f1omoOLD 49055 isinito3 49661 |
| Copyright terms: Public domain | W3C validator |