| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el1o | Structured version Visualization version GIF version | ||
| Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| el1o | ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8444 | . . 3 ⊢ 1o = {∅} | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ {∅}) |
| 3 | 0ex 5265 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 3 | elsn2 4632 | . 2 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∅c0 4299 {csn 4592 1oc1o 8430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-nul 4300 df-sn 4593 df-suc 6341 df-1o 8437 |
| This theorem is referenced by: ord1eln01 8463 ord2eln012 8464 0lt1o 8471 oelim2 8562 oeeulem 8568 oaabs2 8616 cantnff 9634 cnfcom3lem 9663 cfsuc 10217 pf1ind 22249 mavmul0 22446 cramer0 22584 cantnfresb 43320 omabs2 43328 omcl3g 43330 f1omoOLD 48886 isinito3 49493 |
| Copyright terms: Public domain | W3C validator |