MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el1o Structured version   Visualization version   GIF version

Theorem el1o 8419
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o (𝐴 ∈ 1o𝐴 = ∅)

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 8401 . . 3 1o = {∅}
21eleq2i 2825 . 2 (𝐴 ∈ 1o𝐴 ∈ {∅})
3 0ex 5249 . . 3 ∅ ∈ V
43elsn2 4619 . 2 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
52, 4bitri 275 1 (𝐴 ∈ 1o𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2113  c0 4282  {csn 4577  1oc1o 8387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-dif 3901  df-un 3903  df-nul 4283  df-sn 4578  df-suc 6320  df-1o 8394
This theorem is referenced by:  ord1eln01  8420  ord2eln012  8421  0lt1o  8428  oelim2  8519  oeeulem  8525  oaabs2  8573  cantnff  9575  cnfcom3lem  9604  cfsuc  10159  pf1ind  22290  mavmul0  22487  cramer0  22625  cantnfresb  43481  omabs2  43489  omcl3g  43491  f1omoOLD  49055  isinito3  49661
  Copyright terms: Public domain W3C validator