MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el1o Structured version   Visualization version   GIF version

Theorem el1o 8459
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o (𝐴 ∈ 1o𝐴 = ∅)

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 8441 . . 3 1o = {∅}
21eleq2i 2820 . 2 (𝐴 ∈ 1o𝐴 ∈ {∅})
3 0ex 5262 . . 3 ∅ ∈ V
43elsn2 4629 . 2 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
52, 4bitri 275 1 (𝐴 ∈ 1o𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  c0 4296  {csn 4589  1oc1o 8427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-un 3919  df-nul 4297  df-sn 4590  df-suc 6338  df-1o 8434
This theorem is referenced by:  ord1eln01  8460  ord2eln012  8461  0lt1o  8468  oelim2  8559  oeeulem  8565  oaabs2  8613  cantnff  9627  cnfcom3lem  9656  cfsuc  10210  pf1ind  22242  mavmul0  22439  cramer0  22577  cantnfresb  43313  omabs2  43321  omcl3g  43323  f1omoOLD  48882  isinito3  49489
  Copyright terms: Public domain W3C validator