![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el1o | Structured version Visualization version GIF version |
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.) |
Ref | Expression |
---|---|
el1o | ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8512 | . . 3 ⊢ 1o = {∅} | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ {∅}) |
3 | 0ex 5313 | . . 3 ⊢ ∅ ∈ V | |
4 | 3 | elsn2 4670 | . 2 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∅c0 4339 {csn 4631 1oc1o 8498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-nul 4340 df-sn 4632 df-suc 6392 df-1o 8505 |
This theorem is referenced by: ord1eln01 8533 ord2eln012 8534 0lt1o 8541 oelim2 8632 oeeulem 8638 oaabs2 8686 cantnff 9712 cnfcom3lem 9741 cfsuc 10295 pf1ind 22375 mavmul0 22574 cramer0 22712 cantnfresb 43314 omabs2 43322 omcl3g 43324 f1omo 48691 |
Copyright terms: Public domain | W3C validator |