![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el1o | Structured version Visualization version GIF version |
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.) |
Ref | Expression |
---|---|
el1o | ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8529 | . . 3 ⊢ 1o = {∅} | |
2 | 1 | eleq2i 2836 | . 2 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ {∅}) |
3 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
4 | 3 | elsn2 4687 | . 2 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∅c0 4352 {csn 4648 1oc1o 8515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 df-suc 6401 df-1o 8522 |
This theorem is referenced by: ord1eln01 8552 ord2eln012 8553 0lt1o 8560 oelim2 8651 oeeulem 8657 oaabs2 8705 cantnff 9743 cnfcom3lem 9772 cfsuc 10326 pf1ind 22380 mavmul0 22579 cramer0 22717 cantnfresb 43286 omabs2 43294 omcl3g 43296 f1omo 48574 |
Copyright terms: Public domain | W3C validator |