MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el1o Structured version   Visualization version   GIF version

Theorem el1o 8509
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o (𝐴 ∈ 1o𝐴 = ∅)

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 8487 . . 3 1o = {∅}
21eleq2i 2820 . 2 (𝐴 ∈ 1o𝐴 ∈ {∅})
3 0ex 5301 . . 3 ∅ ∈ V
43elsn2 4663 . 2 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
52, 4bitri 275 1 (𝐴 ∈ 1o𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  wcel 2099  c0 4318  {csn 4624  1oc1o 8473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-nul 5300
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471  df-dif 3947  df-un 3949  df-nul 4319  df-sn 4625  df-suc 6369  df-1o 8480
This theorem is referenced by:  ord1eln01  8510  ord2eln012  8511  0lt1o  8518  oelim2  8609  oeeulem  8615  oaabs2  8663  cantnff  9689  cnfcom3lem  9718  cfsuc  10272  pf1ind  22261  mavmul0  22441  cramer0  22579  cantnfresb  42676  omabs2  42684  omcl3g  42686  f1omo  47836
  Copyright terms: Public domain W3C validator