| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el1o | Structured version Visualization version GIF version | ||
| Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| el1o | ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8441 | . . 3 ⊢ 1o = {∅} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ {∅}) |
| 3 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 3 | elsn2 4629 | . 2 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∅c0 4296 {csn 4589 1oc1o 8427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-nul 4297 df-sn 4590 df-suc 6338 df-1o 8434 |
| This theorem is referenced by: ord1eln01 8460 ord2eln012 8461 0lt1o 8468 oelim2 8559 oeeulem 8565 oaabs2 8613 cantnff 9627 cnfcom3lem 9656 cfsuc 10210 pf1ind 22242 mavmul0 22439 cramer0 22577 cantnfresb 43313 omabs2 43321 omcl3g 43323 f1omoOLD 48882 isinito3 49489 |
| Copyright terms: Public domain | W3C validator |