MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnff Structured version   Visualization version   GIF version

Theorem cantnff 9743
Description: The CNF function is a function from finitely supported functions from 𝐵 to 𝐴, to the ordinal exponential 𝐴o 𝐵. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnff (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))

Proof of Theorem cantnff
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6933 . . . 4 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V
21csbex 5329 . . 3 OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V
32a1i 11 . 2 ((𝜑𝑓𝑆) → OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V)
4 eqid 2740 . . . 4 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
5 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
6 cantnfs.b . . . 4 (𝜑𝐵 ∈ On)
74, 5, 6cantnffval 9732 . . 3 (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
8 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
94, 5, 6cantnfdm 9733 . . . . 5 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
108, 9eqtrid 2792 . . . 4 (𝜑𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
1110mpteq1d 5261 . . 3 (𝜑 → (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )) = (𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
127, 11eqtr4d 2783 . 2 (𝜑 → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
135adantr 480 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴 ∈ On)
146adantr 480 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵 ∈ On)
15 eqid 2740 . . . . . . . 8 OrdIso( E , (𝑥 supp ∅)) = OrdIso( E , (𝑥 supp ∅))
16 simpr 484 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥𝑆)
17 eqid 2740 . . . . . . . 8 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)
188, 13, 14, 15, 16, 17cantnfval 9737 . . . . . . 7 ((𝜑𝑥𝑆) → ((𝐴 CNF 𝐵)‘𝑥) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝑥 supp ∅))))
1918adantr 480 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝑥 supp ∅))))
20 ovex 7481 . . . . . . . . . . 11 (𝑥 supp ∅) ∈ V
218, 13, 14, 15, 16cantnfcl 9736 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → ( E We (𝑥 supp ∅) ∧ dom OrdIso( E , (𝑥 supp ∅)) ∈ ω))
2221simpld 494 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → E We (𝑥 supp ∅))
2315oien 9607 . . . . . . . . . . 11 (((𝑥 supp ∅) ∈ V ∧ E We (𝑥 supp ∅)) → dom OrdIso( E , (𝑥 supp ∅)) ≈ (𝑥 supp ∅))
2420, 22, 23sylancr 586 . . . . . . . . . 10 ((𝜑𝑥𝑆) → dom OrdIso( E , (𝑥 supp ∅)) ≈ (𝑥 supp ∅))
2524adantr 480 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → dom OrdIso( E , (𝑥 supp ∅)) ≈ (𝑥 supp ∅))
26 suppssdm 8218 . . . . . . . . . . 11 (𝑥 supp ∅) ⊆ dom 𝑥
278, 5, 6cantnfs 9735 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑆 ↔ (𝑥:𝐵𝐴𝑥 finSupp ∅)))
2827simprbda 498 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑥:𝐵𝐴)
2926, 28fssdm 6766 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑥 supp ∅) ⊆ 𝐵)
30 feq3 6730 . . . . . . . . . . . . . 14 (𝐴 = ∅ → (𝑥:𝐵𝐴𝑥:𝐵⟶∅))
3128, 30syl5ibcom 245 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → (𝐴 = ∅ → 𝑥:𝐵⟶∅))
3231imp 406 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → 𝑥:𝐵⟶∅)
33 f00 6803 . . . . . . . . . . . 12 (𝑥:𝐵⟶∅ ↔ (𝑥 = ∅ ∧ 𝐵 = ∅))
3432, 33sylib 218 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝑥 = ∅ ∧ 𝐵 = ∅))
3534simprd 495 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → 𝐵 = ∅)
36 sseq0 4426 . . . . . . . . . 10 (((𝑥 supp ∅) ⊆ 𝐵𝐵 = ∅) → (𝑥 supp ∅) = ∅)
3729, 35, 36syl2an2r 684 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝑥 supp ∅) = ∅)
3825, 37breqtrd 5192 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → dom OrdIso( E , (𝑥 supp ∅)) ≈ ∅)
39 en0 9078 . . . . . . . 8 (dom OrdIso( E , (𝑥 supp ∅)) ≈ ∅ ↔ dom OrdIso( E , (𝑥 supp ∅)) = ∅)
4038, 39sylib 218 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → dom OrdIso( E , (𝑥 supp ∅)) = ∅)
4140fveq2d 6924 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝑥 supp ∅))) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅))
42 0ex 5325 . . . . . . 7 ∅ ∈ V
4317seqom0g 8512 . . . . . . 7 (∅ ∈ V → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
4442, 43mp1i 13 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
4519, 41, 443eqtrd 2784 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) = ∅)
46 el1o 8551 . . . . 5 (((𝐴 CNF 𝐵)‘𝑥) ∈ 1o ↔ ((𝐴 CNF 𝐵)‘𝑥) = ∅)
4745, 46sylibr 234 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) ∈ 1o)
4835oveq2d 7464 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = (𝐴o ∅))
4913adantr 480 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → 𝐴 ∈ On)
50 oe0 8578 . . . . . 6 (𝐴 ∈ On → (𝐴o ∅) = 1o)
5149, 50syl 17 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝐴o ∅) = 1o)
5248, 51eqtrd 2780 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = 1o)
5347, 52eleqtrrd 2847 . . 3 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) ∈ (𝐴o 𝐵))
5413adantr 480 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
5514adantr 480 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → 𝐵 ∈ On)
5616adantr 480 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → 𝑥𝑆)
57 on0eln0 6451 . . . . . 6 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
5813, 57syl 17 . . . . 5 ((𝜑𝑥𝑆) → (∅ ∈ 𝐴𝐴 ≠ ∅))
5958biimpar 477 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
6029adantr 480 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → (𝑥 supp ∅) ⊆ 𝐵)
618, 54, 55, 56, 59, 55, 60cantnflt2 9742 . . 3 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → ((𝐴 CNF 𝐵)‘𝑥) ∈ (𝐴o 𝐵))
6253, 61pm2.61dane 3035 . 2 ((𝜑𝑥𝑆) → ((𝐴 CNF 𝐵)‘𝑥) ∈ (𝐴o 𝐵))
633, 12, 62fmpt2d 7158 1 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  csb 3921  wss 3976  c0 4352   class class class wbr 5166  cmpt 5249   E cep 5598   We wwe 5651  dom cdm 5700  Oncon0 6395  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  ωcom 7903   supp csupp 8201  seqωcseqom 8503  1oc1o 8515   +o coa 8519   ·o comu 8520  o coe 8521  m cmap 8884  cen 9000   finSupp cfsupp 9431  OrdIsocoi 9578   CNF ccnf 9730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seqom 8504  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-oexp 8528  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-cnf 9731
This theorem is referenced by:  cantnfp1  9750  cantnflem1  9758  cantnflem3  9760  cantnflem4  9761  cantnf  9762  cantnfub  43283
  Copyright terms: Public domain W3C validator