MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnff Structured version   Visualization version   GIF version

Theorem cantnff 9714
Description: The CNF function is a function from finitely supported functions from 𝐵 to 𝐴, to the ordinal exponential 𝐴o 𝐵. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnff (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))

Proof of Theorem cantnff
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6919 . . . 4 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V
21csbex 5311 . . 3 OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V
32a1i 11 . 2 ((𝜑𝑓𝑆) → OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V)
4 eqid 2737 . . . 4 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
5 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
6 cantnfs.b . . . 4 (𝜑𝐵 ∈ On)
74, 5, 6cantnffval 9703 . . 3 (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
8 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
94, 5, 6cantnfdm 9704 . . . . 5 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
108, 9eqtrid 2789 . . . 4 (𝜑𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
1110mpteq1d 5237 . . 3 (𝜑 → (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )) = (𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
127, 11eqtr4d 2780 . 2 (𝜑 → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
135adantr 480 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴 ∈ On)
146adantr 480 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵 ∈ On)
15 eqid 2737 . . . . . . . 8 OrdIso( E , (𝑥 supp ∅)) = OrdIso( E , (𝑥 supp ∅))
16 simpr 484 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥𝑆)
17 eqid 2737 . . . . . . . 8 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)
188, 13, 14, 15, 16, 17cantnfval 9708 . . . . . . 7 ((𝜑𝑥𝑆) → ((𝐴 CNF 𝐵)‘𝑥) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝑥 supp ∅))))
1918adantr 480 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝑥 supp ∅))))
20 ovex 7464 . . . . . . . . . . 11 (𝑥 supp ∅) ∈ V
218, 13, 14, 15, 16cantnfcl 9707 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → ( E We (𝑥 supp ∅) ∧ dom OrdIso( E , (𝑥 supp ∅)) ∈ ω))
2221simpld 494 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → E We (𝑥 supp ∅))
2315oien 9578 . . . . . . . . . . 11 (((𝑥 supp ∅) ∈ V ∧ E We (𝑥 supp ∅)) → dom OrdIso( E , (𝑥 supp ∅)) ≈ (𝑥 supp ∅))
2420, 22, 23sylancr 587 . . . . . . . . . 10 ((𝜑𝑥𝑆) → dom OrdIso( E , (𝑥 supp ∅)) ≈ (𝑥 supp ∅))
2524adantr 480 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → dom OrdIso( E , (𝑥 supp ∅)) ≈ (𝑥 supp ∅))
26 suppssdm 8202 . . . . . . . . . . 11 (𝑥 supp ∅) ⊆ dom 𝑥
278, 5, 6cantnfs 9706 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑆 ↔ (𝑥:𝐵𝐴𝑥 finSupp ∅)))
2827simprbda 498 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑥:𝐵𝐴)
2926, 28fssdm 6755 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑥 supp ∅) ⊆ 𝐵)
30 feq3 6718 . . . . . . . . . . . . . 14 (𝐴 = ∅ → (𝑥:𝐵𝐴𝑥:𝐵⟶∅))
3128, 30syl5ibcom 245 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → (𝐴 = ∅ → 𝑥:𝐵⟶∅))
3231imp 406 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → 𝑥:𝐵⟶∅)
33 f00 6790 . . . . . . . . . . . 12 (𝑥:𝐵⟶∅ ↔ (𝑥 = ∅ ∧ 𝐵 = ∅))
3432, 33sylib 218 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝑥 = ∅ ∧ 𝐵 = ∅))
3534simprd 495 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → 𝐵 = ∅)
36 sseq0 4403 . . . . . . . . . 10 (((𝑥 supp ∅) ⊆ 𝐵𝐵 = ∅) → (𝑥 supp ∅) = ∅)
3729, 35, 36syl2an2r 685 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝑥 supp ∅) = ∅)
3825, 37breqtrd 5169 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → dom OrdIso( E , (𝑥 supp ∅)) ≈ ∅)
39 en0 9058 . . . . . . . 8 (dom OrdIso( E , (𝑥 supp ∅)) ≈ ∅ ↔ dom OrdIso( E , (𝑥 supp ∅)) = ∅)
4038, 39sylib 218 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → dom OrdIso( E , (𝑥 supp ∅)) = ∅)
4140fveq2d 6910 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝑥 supp ∅))) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅))
42 0ex 5307 . . . . . . 7 ∅ ∈ V
4317seqom0g 8496 . . . . . . 7 (∅ ∈ V → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
4442, 43mp1i 13 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
4519, 41, 443eqtrd 2781 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) = ∅)
46 el1o 8533 . . . . 5 (((𝐴 CNF 𝐵)‘𝑥) ∈ 1o ↔ ((𝐴 CNF 𝐵)‘𝑥) = ∅)
4745, 46sylibr 234 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) ∈ 1o)
4835oveq2d 7447 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = (𝐴o ∅))
4913adantr 480 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → 𝐴 ∈ On)
50 oe0 8560 . . . . . 6 (𝐴 ∈ On → (𝐴o ∅) = 1o)
5149, 50syl 17 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝐴o ∅) = 1o)
5248, 51eqtrd 2777 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = 1o)
5347, 52eleqtrrd 2844 . . 3 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) ∈ (𝐴o 𝐵))
5413adantr 480 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
5514adantr 480 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → 𝐵 ∈ On)
5616adantr 480 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → 𝑥𝑆)
57 on0eln0 6440 . . . . . 6 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
5813, 57syl 17 . . . . 5 ((𝜑𝑥𝑆) → (∅ ∈ 𝐴𝐴 ≠ ∅))
5958biimpar 477 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
6029adantr 480 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → (𝑥 supp ∅) ⊆ 𝐵)
618, 54, 55, 56, 59, 55, 60cantnflt2 9713 . . 3 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → ((𝐴 CNF 𝐵)‘𝑥) ∈ (𝐴o 𝐵))
6253, 61pm2.61dane 3029 . 2 ((𝜑𝑥𝑆) → ((𝐴 CNF 𝐵)‘𝑥) ∈ (𝐴o 𝐵))
633, 12, 62fmpt2d 7144 1 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  Vcvv 3480  csb 3899  wss 3951  c0 4333   class class class wbr 5143  cmpt 5225   E cep 5583   We wwe 5636  dom cdm 5685  Oncon0 6384  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  ωcom 7887   supp csupp 8185  seqωcseqom 8487  1oc1o 8499   +o coa 8503   ·o comu 8504  o coe 8505  m cmap 8866  cen 8982   finSupp cfsupp 9401  OrdIsocoi 9549   CNF ccnf 9701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-seqom 8488  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-oexp 8512  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-cnf 9702
This theorem is referenced by:  cantnfp1  9721  cantnflem1  9729  cantnflem3  9731  cantnflem4  9732  cantnf  9733  cantnfub  43334
  Copyright terms: Public domain W3C validator