MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnff Structured version   Visualization version   GIF version

Theorem cantnff 9267
Description: The CNF function is a function from finitely supported functions from 𝐵 to 𝐴, to the ordinal exponential 𝐴o 𝐵. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnff (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))

Proof of Theorem cantnff
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6708 . . . 4 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V
21csbex 5189 . . 3 OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V
32a1i 11 . 2 ((𝜑𝑓𝑆) → OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V)
4 eqid 2736 . . . 4 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
5 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
6 cantnfs.b . . . 4 (𝜑𝐵 ∈ On)
74, 5, 6cantnffval 9256 . . 3 (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
8 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
94, 5, 6cantnfdm 9257 . . . . 5 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
108, 9syl5eq 2783 . . . 4 (𝜑𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
1110mpteq1d 5129 . . 3 (𝜑 → (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )) = (𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
127, 11eqtr4d 2774 . 2 (𝜑 → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
135adantr 484 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴 ∈ On)
146adantr 484 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵 ∈ On)
15 eqid 2736 . . . . . . . 8 OrdIso( E , (𝑥 supp ∅)) = OrdIso( E , (𝑥 supp ∅))
16 simpr 488 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥𝑆)
17 eqid 2736 . . . . . . . 8 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)
188, 13, 14, 15, 16, 17cantnfval 9261 . . . . . . 7 ((𝜑𝑥𝑆) → ((𝐴 CNF 𝐵)‘𝑥) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝑥 supp ∅))))
1918adantr 484 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝑥 supp ∅))))
20 ovex 7224 . . . . . . . . . . 11 (𝑥 supp ∅) ∈ V
218, 13, 14, 15, 16cantnfcl 9260 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → ( E We (𝑥 supp ∅) ∧ dom OrdIso( E , (𝑥 supp ∅)) ∈ ω))
2221simpld 498 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → E We (𝑥 supp ∅))
2315oien 9132 . . . . . . . . . . 11 (((𝑥 supp ∅) ∈ V ∧ E We (𝑥 supp ∅)) → dom OrdIso( E , (𝑥 supp ∅)) ≈ (𝑥 supp ∅))
2420, 22, 23sylancr 590 . . . . . . . . . 10 ((𝜑𝑥𝑆) → dom OrdIso( E , (𝑥 supp ∅)) ≈ (𝑥 supp ∅))
2524adantr 484 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → dom OrdIso( E , (𝑥 supp ∅)) ≈ (𝑥 supp ∅))
26 suppssdm 7897 . . . . . . . . . . 11 (𝑥 supp ∅) ⊆ dom 𝑥
278, 5, 6cantnfs 9259 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑆 ↔ (𝑥:𝐵𝐴𝑥 finSupp ∅)))
2827simprbda 502 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑥:𝐵𝐴)
2926, 28fssdm 6543 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑥 supp ∅) ⊆ 𝐵)
30 feq3 6506 . . . . . . . . . . . . . 14 (𝐴 = ∅ → (𝑥:𝐵𝐴𝑥:𝐵⟶∅))
3128, 30syl5ibcom 248 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → (𝐴 = ∅ → 𝑥:𝐵⟶∅))
3231imp 410 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → 𝑥:𝐵⟶∅)
33 f00 6579 . . . . . . . . . . . 12 (𝑥:𝐵⟶∅ ↔ (𝑥 = ∅ ∧ 𝐵 = ∅))
3432, 33sylib 221 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝑥 = ∅ ∧ 𝐵 = ∅))
3534simprd 499 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → 𝐵 = ∅)
36 sseq0 4300 . . . . . . . . . 10 (((𝑥 supp ∅) ⊆ 𝐵𝐵 = ∅) → (𝑥 supp ∅) = ∅)
3729, 35, 36syl2an2r 685 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝑥 supp ∅) = ∅)
3825, 37breqtrd 5065 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → dom OrdIso( E , (𝑥 supp ∅)) ≈ ∅)
39 en0 8669 . . . . . . . 8 (dom OrdIso( E , (𝑥 supp ∅)) ≈ ∅ ↔ dom OrdIso( E , (𝑥 supp ∅)) = ∅)
4038, 39sylib 221 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → dom OrdIso( E , (𝑥 supp ∅)) = ∅)
4140fveq2d 6699 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝑥 supp ∅))) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅))
42 0ex 5185 . . . . . . 7 ∅ ∈ V
4317seqom0g 8170 . . . . . . 7 (∅ ∈ V → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
4442, 43mp1i 13 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
4519, 41, 443eqtrd 2775 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) = ∅)
46 el1o 8204 . . . . 5 (((𝐴 CNF 𝐵)‘𝑥) ∈ 1o ↔ ((𝐴 CNF 𝐵)‘𝑥) = ∅)
4745, 46sylibr 237 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) ∈ 1o)
4835oveq2d 7207 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = (𝐴o ∅))
4913adantr 484 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → 𝐴 ∈ On)
50 oe0 8227 . . . . . 6 (𝐴 ∈ On → (𝐴o ∅) = 1o)
5149, 50syl 17 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝐴o ∅) = 1o)
5248, 51eqtrd 2771 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = 1o)
5347, 52eleqtrrd 2834 . . 3 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) ∈ (𝐴o 𝐵))
5413adantr 484 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
5514adantr 484 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → 𝐵 ∈ On)
5616adantr 484 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → 𝑥𝑆)
57 on0eln0 6246 . . . . . 6 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
5813, 57syl 17 . . . . 5 ((𝜑𝑥𝑆) → (∅ ∈ 𝐴𝐴 ≠ ∅))
5958biimpar 481 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
6029adantr 484 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → (𝑥 supp ∅) ⊆ 𝐵)
618, 54, 55, 56, 59, 55, 60cantnflt2 9266 . . 3 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → ((𝐴 CNF 𝐵)‘𝑥) ∈ (𝐴o 𝐵))
6253, 61pm2.61dane 3019 . 2 ((𝜑𝑥𝑆) → ((𝐴 CNF 𝐵)‘𝑥) ∈ (𝐴o 𝐵))
633, 12, 62fmpt2d 6918 1 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932  {crab 3055  Vcvv 3398  csb 3798  wss 3853  c0 4223   class class class wbr 5039  cmpt 5120   E cep 5444   We wwe 5493  dom cdm 5536  Oncon0 6191  wf 6354  cfv 6358  (class class class)co 7191  cmpo 7193  ωcom 7622   supp csupp 7881  seqωcseqom 8161  1oc1o 8173   +o coa 8177   ·o comu 8178  o coe 8179  m cmap 8486  cen 8601   finSupp cfsupp 8963  OrdIsocoi 9103   CNF ccnf 9254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-seqom 8162  df-1o 8180  df-2o 8181  df-oadd 8184  df-omul 8185  df-oexp 8186  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-oi 9104  df-cnf 9255
This theorem is referenced by:  cantnfp1  9274  cantnflem1  9282  cantnflem3  9284  cantnflem4  9285  cantnf  9286
  Copyright terms: Public domain W3C validator