MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordge1n0 Structured version   Visualization version   GIF version

Theorem ordge1n0 8290
Description: An ordinal greater than or equal to 1 is nonzero. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
ordge1n0 (Ord 𝐴 → (1o𝐴𝐴 ≠ ∅))

Proof of Theorem ordge1n0
StepHypRef Expression
1 ordgt0ge1 8289 . 2 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
2 ord0eln0 6305 . 2 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
31, 2bitr3d 280 1 (Ord 𝐴 → (1o𝐴𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  wne 2942  wss 3883  c0 4253  Ord word 6250  1oc1o 8260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-suc 6257  df-1o 8267
This theorem is referenced by:  om00  8368  bday1s  33952  finxpsuc  35496
  Copyright terms: Public domain W3C validator