MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordge1n0 Structured version   Visualization version   GIF version

Theorem ordge1n0 8458
Description: An ordinal greater than or equal to 1 is nonzero. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
ordge1n0 (Ord 𝐴 → (1o𝐴𝐴 ≠ ∅))

Proof of Theorem ordge1n0
StepHypRef Expression
1 ordgt0ge1 8457 . 2 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
2 ord0eln0 6388 . 2 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
31, 2bitr3d 281 1 (Ord 𝐴 → (1o𝐴𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wne 2925  wss 3914  c0 4296  Ord word 6331  1oc1o 8427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-suc 6338  df-1o 8434
This theorem is referenced by:  om00  8539  bday1s  27743  finxpsuc  37386  oege1  43295  nelsubc3  49057
  Copyright terms: Public domain W3C validator