| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0lt1o | Structured version Visualization version GIF version | ||
| Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| 0lt1o | ⊢ ∅ ∈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . 2 ⊢ ∅ = ∅ | |
| 2 | el1o 8507 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∅ ∈ 1o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∅c0 4308 1oc1o 8473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-nul 4309 df-sn 4602 df-suc 6358 df-1o 8480 |
| This theorem is referenced by: dif20el 8517 oe1m 8557 oen0 8598 oeoa 8609 oeoe 8611 isfin4p1 10329 fin1a2lem4 10417 1lt2pi 10919 indpi 10921 sadcp1 16474 vr1cl2 22128 fvcoe1 22143 vr1cl 22153 subrgvr1cl 22199 coe1mul2lem1 22204 coe1tm 22210 ply1coe 22236 evl1var 22274 evls1var 22276 rhmply1vr1 22325 xkofvcn 23622 pw2f1ocnv 43061 wepwsolem 43066 onexoegt 43268 oaordnrex 43319 omnord1ex 43328 omcl3g 43358 tfsconcatb0 43368 indthinc 49348 indthincALT 49349 prsthinc 49350 setc1oid 49380 funcsetc1ocl 49381 funcsetc1o 49382 isinito2lem 49383 setc1onsubc 49479 |
| Copyright terms: Public domain | W3C validator |