Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0lt1o | Structured version Visualization version GIF version |
Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
Ref | Expression |
---|---|
0lt1o | ⊢ ∅ ∈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ ∅ = ∅ | |
2 | el1o 8291 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ∅ ∈ 1o |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∅c0 4253 1oc1o 8260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-suc 6257 df-1o 8267 |
This theorem is referenced by: dif20el 8297 oe1m 8338 oen0 8379 oeoa 8390 oeoe 8392 isfin4p1 10002 fin1a2lem4 10090 1lt2pi 10592 indpi 10594 sadcp1 16090 vr1cl2 21274 fvcoe1 21288 vr1cl 21298 subrgvr1cl 21343 coe1mul2lem1 21348 coe1tm 21354 ply1coe 21377 evl1var 21412 evls1var 21414 xkofvcn 22743 pw2f1ocnv 40775 wepwsolem 40783 indthinc 46221 indthincALT 46222 prsthinc 46223 |
Copyright terms: Public domain | W3C validator |