| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0lt1o | Structured version Visualization version GIF version | ||
| Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| 0lt1o | ⊢ ∅ ∈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ ∅ = ∅ | |
| 2 | el1o 8462 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∅ ∈ 1o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4299 1oc1o 8430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-nul 4300 df-sn 4593 df-suc 6341 df-1o 8437 |
| This theorem is referenced by: dif20el 8472 oe1m 8512 oen0 8553 oeoa 8564 oeoe 8566 isfin4p1 10275 fin1a2lem4 10363 1lt2pi 10865 indpi 10867 sadcp1 16432 vr1cl2 22084 fvcoe1 22099 vr1cl 22109 subrgvr1cl 22155 coe1mul2lem1 22160 coe1tm 22166 ply1coe 22192 evl1var 22230 evls1var 22232 rhmply1vr1 22281 xkofvcn 23578 pw2f1ocnv 43033 wepwsolem 43038 onexoegt 43240 oaordnrex 43291 omnord1ex 43300 omcl3g 43330 tfsconcatb0 43340 indthinc 49455 indthincALT 49456 prsthinc 49457 setc1oid 49488 funcsetc1ocl 49489 funcsetc1o 49490 isinito2lem 49491 isinito4 49540 setc1onsubc 49595 |
| Copyright terms: Public domain | W3C validator |