| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0lt1o | Structured version Visualization version GIF version | ||
| Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| 0lt1o | ⊢ ∅ ∈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ ∅ = ∅ | |
| 2 | el1o 8459 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∅ ∈ 1o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4296 1oc1o 8427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-nul 4297 df-sn 4590 df-suc 6338 df-1o 8434 |
| This theorem is referenced by: dif20el 8469 oe1m 8509 oen0 8550 oeoa 8561 oeoe 8563 isfin4p1 10268 fin1a2lem4 10356 1lt2pi 10858 indpi 10860 sadcp1 16425 vr1cl2 22077 fvcoe1 22092 vr1cl 22102 subrgvr1cl 22148 coe1mul2lem1 22153 coe1tm 22159 ply1coe 22185 evl1var 22223 evls1var 22225 rhmply1vr1 22274 xkofvcn 23571 pw2f1ocnv 43026 wepwsolem 43031 onexoegt 43233 oaordnrex 43284 omnord1ex 43293 omcl3g 43323 tfsconcatb0 43333 indthinc 49451 indthincALT 49452 prsthinc 49453 setc1oid 49484 funcsetc1ocl 49485 funcsetc1o 49486 isinito2lem 49487 isinito4 49536 setc1onsubc 49591 |
| Copyright terms: Public domain | W3C validator |