| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0lt1o | Structured version Visualization version GIF version | ||
| Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| 0lt1o | ⊢ ∅ ∈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ ∅ = ∅ | |
| 2 | el1o 8419 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∅ ∈ 1o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∅c0 4282 1oc1o 8387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-un 3903 df-nul 4283 df-sn 4578 df-suc 6320 df-1o 8394 |
| This theorem is referenced by: dif20el 8429 oe1m 8469 oen0 8510 oeoa 8521 oeoe 8523 isfin4p1 10217 fin1a2lem4 10305 1lt2pi 10807 indpi 10809 sadcp1 16373 vr1cl2 22124 fvcoe1 22139 vr1cl 22149 subrgvr1cl 22195 coe1mul2lem1 22200 coe1tm 22206 ply1coe 22233 evl1var 22271 evls1var 22273 rhmply1vr1 22322 xkofvcn 23619 fineqvnttrclse 35216 pw2f1ocnv 43194 wepwsolem 43199 onexoegt 43401 oaordnrex 43452 omnord1ex 43461 omcl3g 43491 tfsconcatb0 43501 indthinc 49623 indthincALT 49624 prsthinc 49625 setc1oid 49656 funcsetc1ocl 49657 funcsetc1o 49658 isinito2lem 49659 isinito4 49708 setc1onsubc 49763 |
| Copyright terms: Public domain | W3C validator |