| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0lt1o | Structured version Visualization version GIF version | ||
| Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| 0lt1o | ⊢ ∅ ∈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ ∅ = ∅ | |
| 2 | el1o 8436 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∅ ∈ 1o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4292 1oc1o 8404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-un 3916 df-nul 4293 df-sn 4586 df-suc 6326 df-1o 8411 |
| This theorem is referenced by: dif20el 8446 oe1m 8486 oen0 8527 oeoa 8538 oeoe 8540 isfin4p1 10244 fin1a2lem4 10332 1lt2pi 10834 indpi 10836 sadcp1 16401 vr1cl2 22053 fvcoe1 22068 vr1cl 22078 subrgvr1cl 22124 coe1mul2lem1 22129 coe1tm 22135 ply1coe 22161 evl1var 22199 evls1var 22201 rhmply1vr1 22250 xkofvcn 23547 pw2f1ocnv 42999 wepwsolem 43004 onexoegt 43206 oaordnrex 43257 omnord1ex 43266 omcl3g 43296 tfsconcatb0 43306 indthinc 49424 indthincALT 49425 prsthinc 49426 setc1oid 49457 funcsetc1ocl 49458 funcsetc1o 49459 isinito2lem 49460 isinito4 49509 setc1onsubc 49564 |
| Copyright terms: Public domain | W3C validator |