![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0lt1o | Structured version Visualization version GIF version |
Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
Ref | Expression |
---|---|
0lt1o | ⊢ ∅ ∈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . 2 ⊢ ∅ = ∅ | |
2 | el1o 8532 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ ∅ ∈ 1o |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ∅c0 4339 1oc1o 8498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-nul 4340 df-sn 4632 df-suc 6392 df-1o 8505 |
This theorem is referenced by: dif20el 8542 oe1m 8582 oen0 8623 oeoa 8634 oeoe 8636 isfin4p1 10353 fin1a2lem4 10441 1lt2pi 10943 indpi 10945 sadcp1 16489 vr1cl2 22210 fvcoe1 22225 vr1cl 22235 subrgvr1cl 22281 coe1mul2lem1 22286 coe1tm 22292 ply1coe 22318 evl1var 22356 evls1var 22358 rhmply1vr1 22407 xkofvcn 23708 pw2f1ocnv 43026 wepwsolem 43031 onexoegt 43233 oaordnrex 43285 omnord1ex 43294 omcl3g 43324 tfsconcatb0 43334 indthinc 48853 indthincALT 48854 prsthinc 48855 |
Copyright terms: Public domain | W3C validator |