Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0lt1o | Structured version Visualization version GIF version |
Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
Ref | Expression |
---|---|
0lt1o | ⊢ ∅ ∈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ ∅ = ∅ | |
2 | el1o 8325 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ∅ ∈ 1o |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∅c0 4256 1oc1o 8290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-sn 4562 df-suc 6272 df-1o 8297 |
This theorem is referenced by: dif20el 8335 oe1m 8376 oen0 8417 oeoa 8428 oeoe 8430 isfin4p1 10071 fin1a2lem4 10159 1lt2pi 10661 indpi 10663 sadcp1 16162 vr1cl2 21364 fvcoe1 21378 vr1cl 21388 subrgvr1cl 21433 coe1mul2lem1 21438 coe1tm 21444 ply1coe 21467 evl1var 21502 evls1var 21504 xkofvcn 22835 pw2f1ocnv 40859 wepwsolem 40867 indthinc 46333 indthincALT 46334 prsthinc 46335 |
Copyright terms: Public domain | W3C validator |