![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0lt1o | Structured version Visualization version GIF version |
Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
Ref | Expression |
---|---|
0lt1o | ⊢ ∅ ∈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ ∅ = ∅ | |
2 | el1o 8551 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ ∅ ∈ 1o |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∅c0 4352 1oc1o 8515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 df-suc 6401 df-1o 8522 |
This theorem is referenced by: dif20el 8561 oe1m 8601 oen0 8642 oeoa 8653 oeoe 8655 isfin4p1 10384 fin1a2lem4 10472 1lt2pi 10974 indpi 10976 sadcp1 16501 vr1cl2 22215 fvcoe1 22230 vr1cl 22240 subrgvr1cl 22286 coe1mul2lem1 22291 coe1tm 22297 ply1coe 22323 evl1var 22361 evls1var 22363 rhmply1vr1 22412 xkofvcn 23713 pw2f1ocnv 42994 wepwsolem 42999 onexoegt 43205 oaordnrex 43257 omnord1ex 43266 omcl3g 43296 tfsconcatb0 43306 indthinc 48719 indthincALT 48720 prsthinc 48721 |
Copyright terms: Public domain | W3C validator |