| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0lt1o | Structured version Visualization version GIF version | ||
| Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| 0lt1o | ⊢ ∅ ∈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ ∅ = ∅ | |
| 2 | el1o 8405 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∅ ∈ 1o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∅c0 4278 1oc1o 8373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-nul 4279 df-sn 4572 df-suc 6307 df-1o 8380 |
| This theorem is referenced by: dif20el 8415 oe1m 8455 oen0 8496 oeoa 8507 oeoe 8509 isfin4p1 10201 fin1a2lem4 10289 1lt2pi 10791 indpi 10793 sadcp1 16361 vr1cl2 22100 fvcoe1 22115 vr1cl 22125 subrgvr1cl 22171 coe1mul2lem1 22176 coe1tm 22182 ply1coe 22208 evl1var 22246 evls1var 22248 rhmply1vr1 22297 xkofvcn 23594 fineqvnttrclse 35136 pw2f1ocnv 43070 wepwsolem 43075 onexoegt 43277 oaordnrex 43328 omnord1ex 43337 omcl3g 43367 tfsconcatb0 43377 indthinc 49494 indthincALT 49495 prsthinc 49496 setc1oid 49527 funcsetc1ocl 49528 funcsetc1o 49529 isinito2lem 49530 isinito4 49579 setc1onsubc 49634 |
| Copyright terms: Public domain | W3C validator |