| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0lt1o | Structured version Visualization version GIF version | ||
| Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| 0lt1o | ⊢ ∅ ∈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ ∅ = ∅ | |
| 2 | el1o 8420 | . 2 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∅ ∈ 1o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4286 1oc1o 8388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-un 3910 df-nul 4287 df-sn 4580 df-suc 6317 df-1o 8395 |
| This theorem is referenced by: dif20el 8430 oe1m 8470 oen0 8511 oeoa 8522 oeoe 8524 isfin4p1 10228 fin1a2lem4 10316 1lt2pi 10818 indpi 10820 sadcp1 16385 vr1cl2 22094 fvcoe1 22109 vr1cl 22119 subrgvr1cl 22165 coe1mul2lem1 22170 coe1tm 22176 ply1coe 22202 evl1var 22240 evls1var 22242 rhmply1vr1 22291 xkofvcn 23588 pw2f1ocnv 43030 wepwsolem 43035 onexoegt 43237 oaordnrex 43288 omnord1ex 43297 omcl3g 43327 tfsconcatb0 43337 indthinc 49467 indthincALT 49468 prsthinc 49469 setc1oid 49500 funcsetc1ocl 49501 funcsetc1o 49502 isinito2lem 49503 isinito4 49552 setc1onsubc 49607 |
| Copyright terms: Public domain | W3C validator |