| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ord1eln01 | Structured version Visualization version GIF version | ||
| Description: An ordinal that is not 0 or 1 contains 1. (Contributed by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| ord1eln01 | ⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4288 | . . 3 ⊢ (1o ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 2 | 1on 8397 | . . . . . 6 ⊢ 1o ∈ On | |
| 3 | 2 | onirri 6420 | . . . . 5 ⊢ ¬ 1o ∈ 1o |
| 4 | eleq2 2820 | . . . . 5 ⊢ (𝐴 = 1o → (1o ∈ 𝐴 ↔ 1o ∈ 1o)) | |
| 5 | 3, 4 | mtbiri 327 | . . . 4 ⊢ (𝐴 = 1o → ¬ 1o ∈ 𝐴) |
| 6 | 5 | necon2ai 2957 | . . 3 ⊢ (1o ∈ 𝐴 → 𝐴 ≠ 1o) |
| 7 | 1, 6 | jca 511 | . 2 ⊢ (1o ∈ 𝐴 → (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o)) |
| 8 | el1o 8410 | . . . . . . 7 ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) | |
| 9 | 8 | biimpi 216 | . . . . . 6 ⊢ (𝐴 ∈ 1o → 𝐴 = ∅) |
| 10 | 9 | necon3ai 2953 | . . . . 5 ⊢ (𝐴 ≠ ∅ → ¬ 𝐴 ∈ 1o) |
| 11 | nesym 2984 | . . . . . 6 ⊢ (𝐴 ≠ 1o ↔ ¬ 1o = 𝐴) | |
| 12 | 11 | biimpi 216 | . . . . 5 ⊢ (𝐴 ≠ 1o → ¬ 1o = 𝐴) |
| 13 | 10, 12 | anim12ci 614 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → (¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o)) |
| 14 | pm4.56 990 | . . . 4 ⊢ ((¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o) ↔ ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o)) | |
| 15 | 13, 14 | sylib 218 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o)) |
| 16 | 2 | onordi 6419 | . . . 4 ⊢ Ord 1o |
| 17 | ordtri2 6341 | . . . 4 ⊢ ((Ord 1o ∧ Ord 𝐴) → (1o ∈ 𝐴 ↔ ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o))) | |
| 18 | 16, 17 | mpan 690 | . . 3 ⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o))) |
| 19 | 15, 18 | imbitrrid 246 | . 2 ⊢ (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → 1o ∈ 𝐴)) |
| 20 | 7, 19 | impbid2 226 | 1 ⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 Ord word 6305 1oc1o 8378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-suc 6312 df-1o 8385 |
| This theorem is referenced by: 1ellim 8413 |
| Copyright terms: Public domain | W3C validator |