![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ord1eln01 | Structured version Visualization version GIF version |
Description: An ordinal that is not 0 or 1 contains 1. (Contributed by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
ord1eln01 | ⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4364 | . . 3 ⊢ (1o ∈ 𝐴 → 𝐴 ≠ ∅) | |
2 | 1on 8534 | . . . . . 6 ⊢ 1o ∈ On | |
3 | 2 | onirri 6508 | . . . . 5 ⊢ ¬ 1o ∈ 1o |
4 | eleq2 2833 | . . . . 5 ⊢ (𝐴 = 1o → (1o ∈ 𝐴 ↔ 1o ∈ 1o)) | |
5 | 3, 4 | mtbiri 327 | . . . 4 ⊢ (𝐴 = 1o → ¬ 1o ∈ 𝐴) |
6 | 5 | necon2ai 2976 | . . 3 ⊢ (1o ∈ 𝐴 → 𝐴 ≠ 1o) |
7 | 1, 6 | jca 511 | . 2 ⊢ (1o ∈ 𝐴 → (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o)) |
8 | el1o 8551 | . . . . . . 7 ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) | |
9 | 8 | biimpi 216 | . . . . . 6 ⊢ (𝐴 ∈ 1o → 𝐴 = ∅) |
10 | 9 | necon3ai 2971 | . . . . 5 ⊢ (𝐴 ≠ ∅ → ¬ 𝐴 ∈ 1o) |
11 | nesym 3003 | . . . . . 6 ⊢ (𝐴 ≠ 1o ↔ ¬ 1o = 𝐴) | |
12 | 11 | biimpi 216 | . . . . 5 ⊢ (𝐴 ≠ 1o → ¬ 1o = 𝐴) |
13 | 10, 12 | anim12ci 613 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → (¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o)) |
14 | pm4.56 989 | . . . 4 ⊢ ((¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o) ↔ ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o)) | |
15 | 13, 14 | sylib 218 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o)) |
16 | 2 | onordi 6506 | . . . 4 ⊢ Ord 1o |
17 | ordtri2 6430 | . . . 4 ⊢ ((Ord 1o ∧ Ord 𝐴) → (1o ∈ 𝐴 ↔ ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o))) | |
18 | 16, 17 | mpan 689 | . . 3 ⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o))) |
19 | 15, 18 | imbitrrid 246 | . 2 ⊢ (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → 1o ∈ 𝐴)) |
20 | 7, 19 | impbid2 226 | 1 ⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 Ord word 6394 1oc1o 8515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-suc 6401 df-1o 8522 |
This theorem is referenced by: 1ellim 8554 |
Copyright terms: Public domain | W3C validator |