MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord1eln01 Structured version   Visualization version   GIF version

Theorem ord1eln01 8517
Description: An ordinal that is not 0 or 1 contains 1. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
ord1eln01 (Ord 𝐴 → (1o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o)))

Proof of Theorem ord1eln01
StepHypRef Expression
1 ne0i 4334 . . 3 (1o𝐴𝐴 ≠ ∅)
2 1on 8499 . . . . . 6 1o ∈ On
32onirri 6484 . . . . 5 ¬ 1o ∈ 1o
4 eleq2 2814 . . . . 5 (𝐴 = 1o → (1o𝐴 ↔ 1o ∈ 1o))
53, 4mtbiri 326 . . . 4 (𝐴 = 1o → ¬ 1o𝐴)
65necon2ai 2959 . . 3 (1o𝐴𝐴 ≠ 1o)
71, 6jca 510 . 2 (1o𝐴 → (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))
8 el1o 8516 . . . . . . 7 (𝐴 ∈ 1o𝐴 = ∅)
98biimpi 215 . . . . . 6 (𝐴 ∈ 1o𝐴 = ∅)
109necon3ai 2954 . . . . 5 (𝐴 ≠ ∅ → ¬ 𝐴 ∈ 1o)
11 nesym 2986 . . . . . 6 (𝐴 ≠ 1o ↔ ¬ 1o = 𝐴)
1211biimpi 215 . . . . 5 (𝐴 ≠ 1o → ¬ 1o = 𝐴)
1310, 12anim12ci 612 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → (¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o))
14 pm4.56 986 . . . 4 ((¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o) ↔ ¬ (1o = 𝐴𝐴 ∈ 1o))
1513, 14sylib 217 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → ¬ (1o = 𝐴𝐴 ∈ 1o))
162onordi 6482 . . . 4 Ord 1o
17 ordtri2 6406 . . . 4 ((Ord 1o ∧ Ord 𝐴) → (1o𝐴 ↔ ¬ (1o = 𝐴𝐴 ∈ 1o)))
1816, 17mpan 688 . . 3 (Ord 𝐴 → (1o𝐴 ↔ ¬ (1o = 𝐴𝐴 ∈ 1o)))
1915, 18imbitrrid 245 . 2 (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → 1o𝐴))
207, 19impbid2 225 1 (Ord 𝐴 → (1o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2929  c0 4322  Ord word 6370  1oc1o 8480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-ord 6374  df-on 6375  df-suc 6377  df-1o 8487
This theorem is referenced by:  1ellim  8519
  Copyright terms: Public domain W3C validator