Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ord1eln01 | Structured version Visualization version GIF version |
Description: An ordinal that is not 0 or 1 contains 1. (Contributed by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
ord1eln01 | ⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4282 | . . 3 ⊢ (1o ∈ 𝐴 → 𝐴 ≠ ∅) | |
2 | 1on 8380 | . . . . . 6 ⊢ 1o ∈ On | |
3 | 2 | onirri 6414 | . . . . 5 ⊢ ¬ 1o ∈ 1o |
4 | eleq2 2825 | . . . . 5 ⊢ (𝐴 = 1o → (1o ∈ 𝐴 ↔ 1o ∈ 1o)) | |
5 | 3, 4 | mtbiri 326 | . . . 4 ⊢ (𝐴 = 1o → ¬ 1o ∈ 𝐴) |
6 | 5 | necon2ai 2970 | . . 3 ⊢ (1o ∈ 𝐴 → 𝐴 ≠ 1o) |
7 | 1, 6 | jca 512 | . 2 ⊢ (1o ∈ 𝐴 → (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o)) |
8 | el1o 8397 | . . . . . . 7 ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) | |
9 | 8 | biimpi 215 | . . . . . 6 ⊢ (𝐴 ∈ 1o → 𝐴 = ∅) |
10 | 9 | necon3ai 2965 | . . . . 5 ⊢ (𝐴 ≠ ∅ → ¬ 𝐴 ∈ 1o) |
11 | nesym 2997 | . . . . . 6 ⊢ (𝐴 ≠ 1o ↔ ¬ 1o = 𝐴) | |
12 | 11 | biimpi 215 | . . . . 5 ⊢ (𝐴 ≠ 1o → ¬ 1o = 𝐴) |
13 | 10, 12 | anim12ci 614 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → (¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o)) |
14 | pm4.56 986 | . . . 4 ⊢ ((¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o) ↔ ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o)) | |
15 | 13, 14 | sylib 217 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o)) |
16 | 2 | onordi 6412 | . . . 4 ⊢ Ord 1o |
17 | ordtri2 6338 | . . . 4 ⊢ ((Ord 1o ∧ Ord 𝐴) → (1o ∈ 𝐴 ↔ ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o))) | |
18 | 16, 17 | mpan 687 | . . 3 ⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o))) |
19 | 15, 18 | syl5ibr 245 | . 2 ⊢ (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → 1o ∈ 𝐴)) |
20 | 7, 19 | impbid2 225 | 1 ⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∅c0 4270 Ord word 6302 1oc1o 8361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-tr 5211 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-ord 6306 df-on 6307 df-suc 6309 df-1o 8368 |
This theorem is referenced by: 1ellim 8400 |
Copyright terms: Public domain | W3C validator |