MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord1eln01 Structured version   Visualization version   GIF version

Theorem ord1eln01 8552
Description: An ordinal that is not 0 or 1 contains 1. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
ord1eln01 (Ord 𝐴 → (1o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o)))

Proof of Theorem ord1eln01
StepHypRef Expression
1 ne0i 4364 . . 3 (1o𝐴𝐴 ≠ ∅)
2 1on 8534 . . . . . 6 1o ∈ On
32onirri 6508 . . . . 5 ¬ 1o ∈ 1o
4 eleq2 2833 . . . . 5 (𝐴 = 1o → (1o𝐴 ↔ 1o ∈ 1o))
53, 4mtbiri 327 . . . 4 (𝐴 = 1o → ¬ 1o𝐴)
65necon2ai 2976 . . 3 (1o𝐴𝐴 ≠ 1o)
71, 6jca 511 . 2 (1o𝐴 → (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))
8 el1o 8551 . . . . . . 7 (𝐴 ∈ 1o𝐴 = ∅)
98biimpi 216 . . . . . 6 (𝐴 ∈ 1o𝐴 = ∅)
109necon3ai 2971 . . . . 5 (𝐴 ≠ ∅ → ¬ 𝐴 ∈ 1o)
11 nesym 3003 . . . . . 6 (𝐴 ≠ 1o ↔ ¬ 1o = 𝐴)
1211biimpi 216 . . . . 5 (𝐴 ≠ 1o → ¬ 1o = 𝐴)
1310, 12anim12ci 613 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → (¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o))
14 pm4.56 989 . . . 4 ((¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o) ↔ ¬ (1o = 𝐴𝐴 ∈ 1o))
1513, 14sylib 218 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → ¬ (1o = 𝐴𝐴 ∈ 1o))
162onordi 6506 . . . 4 Ord 1o
17 ordtri2 6430 . . . 4 ((Ord 1o ∧ Ord 𝐴) → (1o𝐴 ↔ ¬ (1o = 𝐴𝐴 ∈ 1o)))
1816, 17mpan 689 . . 3 (Ord 𝐴 → (1o𝐴 ↔ ¬ (1o = 𝐴𝐴 ∈ 1o)))
1915, 18imbitrrid 246 . 2 (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → 1o𝐴))
207, 19impbid2 226 1 (Ord 𝐴 → (1o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  c0 4352  Ord word 6394  1oc1o 8515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401  df-1o 8522
This theorem is referenced by:  1ellim  8554
  Copyright terms: Public domain W3C validator