Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ord1eln01 | Structured version Visualization version GIF version |
Description: An ordinal that is not 0 or 1 contains 1. (Contributed by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
ord1eln01 | ⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4268 | . . 3 ⊢ (1o ∈ 𝐴 → 𝐴 ≠ ∅) | |
2 | 1on 8309 | . . . . . 6 ⊢ 1o ∈ On | |
3 | 2 | onirri 6373 | . . . . 5 ⊢ ¬ 1o ∈ 1o |
4 | eleq2 2827 | . . . . 5 ⊢ (𝐴 = 1o → (1o ∈ 𝐴 ↔ 1o ∈ 1o)) | |
5 | 3, 4 | mtbiri 327 | . . . 4 ⊢ (𝐴 = 1o → ¬ 1o ∈ 𝐴) |
6 | 5 | necon2ai 2973 | . . 3 ⊢ (1o ∈ 𝐴 → 𝐴 ≠ 1o) |
7 | 1, 6 | jca 512 | . 2 ⊢ (1o ∈ 𝐴 → (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o)) |
8 | el1o 8325 | . . . . . . 7 ⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) | |
9 | 8 | biimpi 215 | . . . . . 6 ⊢ (𝐴 ∈ 1o → 𝐴 = ∅) |
10 | 9 | necon3ai 2968 | . . . . 5 ⊢ (𝐴 ≠ ∅ → ¬ 𝐴 ∈ 1o) |
11 | nesym 3000 | . . . . . 6 ⊢ (𝐴 ≠ 1o ↔ ¬ 1o = 𝐴) | |
12 | 11 | biimpi 215 | . . . . 5 ⊢ (𝐴 ≠ 1o → ¬ 1o = 𝐴) |
13 | 10, 12 | anim12ci 614 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → (¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o)) |
14 | pm4.56 986 | . . . 4 ⊢ ((¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o) ↔ ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o)) | |
15 | 13, 14 | sylib 217 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o)) |
16 | 2 | onordi 6371 | . . . 4 ⊢ Ord 1o |
17 | ordtri2 6301 | . . . 4 ⊢ ((Ord 1o ∧ Ord 𝐴) → (1o ∈ 𝐴 ↔ ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o))) | |
18 | 16, 17 | mpan 687 | . . 3 ⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ ¬ (1o = 𝐴 ∨ 𝐴 ∈ 1o))) |
19 | 15, 18 | syl5ibr 245 | . 2 ⊢ (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o) → 1o ∈ 𝐴)) |
20 | 7, 19 | impbid2 225 | 1 ⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 Ord word 6265 1oc1o 8290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-suc 6272 df-1o 8297 |
This theorem is referenced by: 1ellim 8328 |
Copyright terms: Public domain | W3C validator |