MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmul0 Structured version   Visualization version   GIF version

Theorem mavmul0 22465
Description: Multiplication of a 0-dimensional matrix with a 0-dimensional vector. (Contributed by AV, 28-Feb-2019.)
Hypothesis
Ref Expression
mavmul0.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
mavmul0 ((𝑁 = ∅ ∧ 𝑅𝑉) → (∅ · ∅) = ∅)

Proof of Theorem mavmul0
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
2 mavmul0.t . . 3 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3 eqid 2731 . . 3 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2731 . . 3 (.r𝑅) = (.r𝑅)
5 simpr 484 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑅𝑉)
6 0fi 8964 . . . . 5 ∅ ∈ Fin
7 eleq1 2819 . . . . 5 (𝑁 = ∅ → (𝑁 ∈ Fin ↔ ∅ ∈ Fin))
86, 7mpbiri 258 . . . 4 (𝑁 = ∅ → 𝑁 ∈ Fin)
98adantr 480 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
10 0ex 5245 . . . . 5 ∅ ∈ V
11 snidg 4613 . . . . 5 (∅ ∈ V → ∅ ∈ {∅})
1210, 11mp1i 13 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → ∅ ∈ {∅})
13 oveq1 7353 . . . . . . 7 (𝑁 = ∅ → (𝑁 Mat 𝑅) = (∅ Mat 𝑅))
1413adantr 480 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑁 Mat 𝑅) = (∅ Mat 𝑅))
1514fveq2d 6826 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → (Base‘(𝑁 Mat 𝑅)) = (Base‘(∅ Mat 𝑅)))
16 mat0dimbas0 22379 . . . . . 6 (𝑅𝑉 → (Base‘(∅ Mat 𝑅)) = {∅})
1716adantl 481 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → (Base‘(∅ Mat 𝑅)) = {∅})
1815, 17eqtrd 2766 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → (Base‘(𝑁 Mat 𝑅)) = {∅})
1912, 18eleqtrrd 2834 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → ∅ ∈ (Base‘(𝑁 Mat 𝑅)))
20 eqidd 2732 . . . . . 6 (𝑁 = ∅ → ∅ = ∅)
21 el1o 8410 . . . . . 6 (∅ ∈ 1o ↔ ∅ = ∅)
2220, 21sylibr 234 . . . . 5 (𝑁 = ∅ → ∅ ∈ 1o)
23 oveq2 7354 . . . . . 6 (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅))
24 fvex 6835 . . . . . . 7 (Base‘𝑅) ∈ V
25 map0e 8806 . . . . . . 7 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑m ∅) = 1o)
2624, 25mp1i 13 . . . . . 6 (𝑁 = ∅ → ((Base‘𝑅) ↑m ∅) = 1o)
2723, 26eqtrd 2766 . . . . 5 (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = 1o)
2822, 27eleqtrrd 2834 . . . 4 (𝑁 = ∅ → ∅ ∈ ((Base‘𝑅) ↑m 𝑁))
2928adantr 480 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → ∅ ∈ ((Base‘𝑅) ↑m 𝑁))
301, 2, 3, 4, 5, 9, 19, 29mavmulval 22458 . 2 ((𝑁 = ∅ ∧ 𝑅𝑉) → (∅ · ∅) = (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))))
31 mpteq1 5180 . . . 4 (𝑁 = ∅ → (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))) = (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))))
3231adantr 480 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))) = (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))))
33 mpt0 6623 . . 3 (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))) = ∅
3432, 33eqtrdi 2782 . 2 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))) = ∅)
3530, 34eqtrd 2766 1 ((𝑁 = ∅ ∧ 𝑅𝑉) → (∅ · ∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  {csn 4576  cop 4582  cmpt 5172  cfv 6481  (class class class)co 7346  1oc1o 8378  m cmap 8750  Fincfn 8869  Basecbs 17117  .rcmulr 17159   Σg cgsu 17341   Mat cmat 22320   maVecMul cmvmul 22453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-hom 17182  df-cco 17183  df-0g 17342  df-prds 17348  df-pws 17350  df-sra 21105  df-rgmod 21106  df-dsmm 21667  df-frlm 21682  df-mat 22321  df-mvmul 22454
This theorem is referenced by:  mavmul0g  22466  cramer0  22603
  Copyright terms: Public domain W3C validator