Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mavmul0 | Structured version Visualization version GIF version |
Description: Multiplication of a 0-dimensional matrix with a 0-dimensional vector. (Contributed by AV, 28-Feb-2019.) |
Ref | Expression |
---|---|
mavmul0.t | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
Ref | Expression |
---|---|
mavmul0 | ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (∅ · ∅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
2 | mavmul0.t | . . 3 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
3 | eqid 2736 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | eqid 2736 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | simpr 486 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) | |
6 | 0fin 8992 | . . . . 5 ⊢ ∅ ∈ Fin | |
7 | eleq1 2824 | . . . . 5 ⊢ (𝑁 = ∅ → (𝑁 ∈ Fin ↔ ∅ ∈ Fin)) | |
8 | 6, 7 | mpbiri 258 | . . . 4 ⊢ (𝑁 = ∅ → 𝑁 ∈ Fin) |
9 | 8 | adantr 482 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ Fin) |
10 | 0ex 5240 | . . . . 5 ⊢ ∅ ∈ V | |
11 | snidg 4599 | . . . . 5 ⊢ (∅ ∈ V → ∅ ∈ {∅}) | |
12 | 10, 11 | mp1i 13 | . . . 4 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ∅ ∈ {∅}) |
13 | oveq1 7314 | . . . . . . 7 ⊢ (𝑁 = ∅ → (𝑁 Mat 𝑅) = (∅ Mat 𝑅)) | |
14 | 13 | adantr 482 | . . . . . 6 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (𝑁 Mat 𝑅) = (∅ Mat 𝑅)) |
15 | 14 | fveq2d 6808 | . . . . 5 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (Base‘(𝑁 Mat 𝑅)) = (Base‘(∅ Mat 𝑅))) |
16 | mat0dimbas0 21660 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (Base‘(∅ Mat 𝑅)) = {∅}) | |
17 | 16 | adantl 483 | . . . . 5 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (Base‘(∅ Mat 𝑅)) = {∅}) |
18 | 15, 17 | eqtrd 2776 | . . . 4 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (Base‘(𝑁 Mat 𝑅)) = {∅}) |
19 | 12, 18 | eleqtrrd 2840 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ∅ ∈ (Base‘(𝑁 Mat 𝑅))) |
20 | eqidd 2737 | . . . . . 6 ⊢ (𝑁 = ∅ → ∅ = ∅) | |
21 | el1o 8356 | . . . . . 6 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
22 | 20, 21 | sylibr 233 | . . . . 5 ⊢ (𝑁 = ∅ → ∅ ∈ 1o) |
23 | oveq2 7315 | . . . . . 6 ⊢ (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅)) | |
24 | fvex 6817 | . . . . . . 7 ⊢ (Base‘𝑅) ∈ V | |
25 | map0e 8701 | . . . . . . 7 ⊢ ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑m ∅) = 1o) | |
26 | 24, 25 | mp1i 13 | . . . . . 6 ⊢ (𝑁 = ∅ → ((Base‘𝑅) ↑m ∅) = 1o) |
27 | 23, 26 | eqtrd 2776 | . . . . 5 ⊢ (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = 1o) |
28 | 22, 27 | eleqtrrd 2840 | . . . 4 ⊢ (𝑁 = ∅ → ∅ ∈ ((Base‘𝑅) ↑m 𝑁)) |
29 | 28 | adantr 482 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ∅ ∈ ((Base‘𝑅) ↑m 𝑁)) |
30 | 1, 2, 3, 4, 5, 9, 19, 29 | mavmulval 21739 | . 2 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (∅ · ∅) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗)))))) |
31 | mpteq1 5174 | . . . 4 ⊢ (𝑁 = ∅ → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗)))))) | |
32 | 31 | adantr 482 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗)))))) |
33 | mpt0 6605 | . . 3 ⊢ (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = ∅ | |
34 | 32, 33 | eqtrdi 2792 | . 2 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = ∅) |
35 | 30, 34 | eqtrd 2776 | 1 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (∅ · ∅) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∅c0 4262 {csn 4565 〈cop 4571 ↦ cmpt 5164 ‘cfv 6458 (class class class)co 7307 1oc1o 8321 ↑m cmap 8646 Fincfn 8764 Basecbs 16957 .rcmulr 17008 Σg cgsu 17196 Mat cmat 21599 maVecMul cmvmul 21734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-ot 4574 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-sup 9245 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-fz 13286 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-hom 17031 df-cco 17032 df-0g 17197 df-prds 17203 df-pws 17205 df-sra 20479 df-rgmod 20480 df-dsmm 20984 df-frlm 20999 df-mat 21600 df-mvmul 21735 |
This theorem is referenced by: mavmul0g 21747 cramer0 21884 |
Copyright terms: Public domain | W3C validator |