| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mavmul0 | Structured version Visualization version GIF version | ||
| Description: Multiplication of a 0-dimensional matrix with a 0-dimensional vector. (Contributed by AV, 28-Feb-2019.) |
| Ref | Expression |
|---|---|
| mavmul0.t | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
| Ref | Expression |
|---|---|
| mavmul0 | ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (∅ · ∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
| 2 | mavmul0.t | . . 3 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
| 3 | eqid 2733 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | eqid 2733 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | simpr 484 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) | |
| 6 | 0fi 8971 | . . . . 5 ⊢ ∅ ∈ Fin | |
| 7 | eleq1 2821 | . . . . 5 ⊢ (𝑁 = ∅ → (𝑁 ∈ Fin ↔ ∅ ∈ Fin)) | |
| 8 | 6, 7 | mpbiri 258 | . . . 4 ⊢ (𝑁 = ∅ → 𝑁 ∈ Fin) |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ Fin) |
| 10 | 0ex 5247 | . . . . 5 ⊢ ∅ ∈ V | |
| 11 | snidg 4612 | . . . . 5 ⊢ (∅ ∈ V → ∅ ∈ {∅}) | |
| 12 | 10, 11 | mp1i 13 | . . . 4 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ∅ ∈ {∅}) |
| 13 | oveq1 7359 | . . . . . . 7 ⊢ (𝑁 = ∅ → (𝑁 Mat 𝑅) = (∅ Mat 𝑅)) | |
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (𝑁 Mat 𝑅) = (∅ Mat 𝑅)) |
| 15 | 14 | fveq2d 6832 | . . . . 5 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (Base‘(𝑁 Mat 𝑅)) = (Base‘(∅ Mat 𝑅))) |
| 16 | mat0dimbas0 22382 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (Base‘(∅ Mat 𝑅)) = {∅}) | |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (Base‘(∅ Mat 𝑅)) = {∅}) |
| 18 | 15, 17 | eqtrd 2768 | . . . 4 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (Base‘(𝑁 Mat 𝑅)) = {∅}) |
| 19 | 12, 18 | eleqtrrd 2836 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ∅ ∈ (Base‘(𝑁 Mat 𝑅))) |
| 20 | eqidd 2734 | . . . . . 6 ⊢ (𝑁 = ∅ → ∅ = ∅) | |
| 21 | el1o 8416 | . . . . . 6 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
| 22 | 20, 21 | sylibr 234 | . . . . 5 ⊢ (𝑁 = ∅ → ∅ ∈ 1o) |
| 23 | oveq2 7360 | . . . . . 6 ⊢ (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅)) | |
| 24 | fvex 6841 | . . . . . . 7 ⊢ (Base‘𝑅) ∈ V | |
| 25 | map0e 8812 | . . . . . . 7 ⊢ ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑m ∅) = 1o) | |
| 26 | 24, 25 | mp1i 13 | . . . . . 6 ⊢ (𝑁 = ∅ → ((Base‘𝑅) ↑m ∅) = 1o) |
| 27 | 23, 26 | eqtrd 2768 | . . . . 5 ⊢ (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = 1o) |
| 28 | 22, 27 | eleqtrrd 2836 | . . . 4 ⊢ (𝑁 = ∅ → ∅ ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ∅ ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 30 | 1, 2, 3, 4, 5, 9, 19, 29 | mavmulval 22461 | . 2 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (∅ · ∅) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗)))))) |
| 31 | mpteq1 5182 | . . . 4 ⊢ (𝑁 = ∅ → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗)))))) | |
| 32 | 31 | adantr 480 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗)))))) |
| 33 | mpt0 6628 | . . 3 ⊢ (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = ∅ | |
| 34 | 32, 33 | eqtrdi 2784 | . 2 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = ∅) |
| 35 | 30, 34 | eqtrd 2768 | 1 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (∅ · ∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 {csn 4575 〈cop 4581 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 1oc1o 8384 ↑m cmap 8756 Fincfn 8875 Basecbs 17122 .rcmulr 17164 Σg cgsu 17346 Mat cmat 22323 maVecMul cmvmul 22456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-0g 17347 df-prds 17353 df-pws 17355 df-sra 21109 df-rgmod 21110 df-dsmm 21671 df-frlm 21686 df-mat 22324 df-mvmul 22457 |
| This theorem is referenced by: mavmul0g 22469 cramer0 22606 |
| Copyright terms: Public domain | W3C validator |