| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mavmul0 | Structured version Visualization version GIF version | ||
| Description: Multiplication of a 0-dimensional matrix with a 0-dimensional vector. (Contributed by AV, 28-Feb-2019.) |
| Ref | Expression |
|---|---|
| mavmul0.t | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
| Ref | Expression |
|---|---|
| mavmul0 | ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (∅ · ∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
| 2 | mavmul0.t | . . 3 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
| 3 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | eqid 2729 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | simpr 484 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) | |
| 6 | 0fi 8974 | . . . . 5 ⊢ ∅ ∈ Fin | |
| 7 | eleq1 2816 | . . . . 5 ⊢ (𝑁 = ∅ → (𝑁 ∈ Fin ↔ ∅ ∈ Fin)) | |
| 8 | 6, 7 | mpbiri 258 | . . . 4 ⊢ (𝑁 = ∅ → 𝑁 ∈ Fin) |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ Fin) |
| 10 | 0ex 5249 | . . . . 5 ⊢ ∅ ∈ V | |
| 11 | snidg 4614 | . . . . 5 ⊢ (∅ ∈ V → ∅ ∈ {∅}) | |
| 12 | 10, 11 | mp1i 13 | . . . 4 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ∅ ∈ {∅}) |
| 13 | oveq1 7360 | . . . . . . 7 ⊢ (𝑁 = ∅ → (𝑁 Mat 𝑅) = (∅ Mat 𝑅)) | |
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (𝑁 Mat 𝑅) = (∅ Mat 𝑅)) |
| 15 | 14 | fveq2d 6830 | . . . . 5 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (Base‘(𝑁 Mat 𝑅)) = (Base‘(∅ Mat 𝑅))) |
| 16 | mat0dimbas0 22369 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (Base‘(∅ Mat 𝑅)) = {∅}) | |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (Base‘(∅ Mat 𝑅)) = {∅}) |
| 18 | 15, 17 | eqtrd 2764 | . . . 4 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (Base‘(𝑁 Mat 𝑅)) = {∅}) |
| 19 | 12, 18 | eleqtrrd 2831 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ∅ ∈ (Base‘(𝑁 Mat 𝑅))) |
| 20 | eqidd 2730 | . . . . . 6 ⊢ (𝑁 = ∅ → ∅ = ∅) | |
| 21 | el1o 8420 | . . . . . 6 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
| 22 | 20, 21 | sylibr 234 | . . . . 5 ⊢ (𝑁 = ∅ → ∅ ∈ 1o) |
| 23 | oveq2 7361 | . . . . . 6 ⊢ (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅)) | |
| 24 | fvex 6839 | . . . . . . 7 ⊢ (Base‘𝑅) ∈ V | |
| 25 | map0e 8816 | . . . . . . 7 ⊢ ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑m ∅) = 1o) | |
| 26 | 24, 25 | mp1i 13 | . . . . . 6 ⊢ (𝑁 = ∅ → ((Base‘𝑅) ↑m ∅) = 1o) |
| 27 | 23, 26 | eqtrd 2764 | . . . . 5 ⊢ (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = 1o) |
| 28 | 22, 27 | eleqtrrd 2831 | . . . 4 ⊢ (𝑁 = ∅ → ∅ ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ∅ ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 30 | 1, 2, 3, 4, 5, 9, 19, 29 | mavmulval 22448 | . 2 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (∅ · ∅) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗)))))) |
| 31 | mpteq1 5184 | . . . 4 ⊢ (𝑁 = ∅ → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗)))))) | |
| 32 | 31 | adantr 480 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗)))))) |
| 33 | mpt0 6628 | . . 3 ⊢ (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = ∅ | |
| 34 | 32, 33 | eqtrdi 2780 | . 2 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = ∅) |
| 35 | 30, 34 | eqtrd 2764 | 1 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (∅ · ∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 {csn 4579 〈cop 4585 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 1oc1o 8388 ↑m cmap 8760 Fincfn 8879 Basecbs 17138 .rcmulr 17180 Σg cgsu 17362 Mat cmat 22310 maVecMul cmvmul 22443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-prds 17369 df-pws 17371 df-sra 21095 df-rgmod 21096 df-dsmm 21657 df-frlm 21672 df-mat 22311 df-mvmul 22444 |
| This theorem is referenced by: mavmul0g 22456 cramer0 22593 |
| Copyright terms: Public domain | W3C validator |