MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmul0 Structured version   Visualization version   GIF version

Theorem mavmul0 21746
Description: Multiplication of a 0-dimensional matrix with a 0-dimensional vector. (Contributed by AV, 28-Feb-2019.)
Hypothesis
Ref Expression
mavmul0.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
mavmul0 ((𝑁 = ∅ ∧ 𝑅𝑉) → (∅ · ∅) = ∅)

Proof of Theorem mavmul0
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
2 mavmul0.t . . 3 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2736 . . 3 (.r𝑅) = (.r𝑅)
5 simpr 486 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑅𝑉)
6 0fin 8992 . . . . 5 ∅ ∈ Fin
7 eleq1 2824 . . . . 5 (𝑁 = ∅ → (𝑁 ∈ Fin ↔ ∅ ∈ Fin))
86, 7mpbiri 258 . . . 4 (𝑁 = ∅ → 𝑁 ∈ Fin)
98adantr 482 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
10 0ex 5240 . . . . 5 ∅ ∈ V
11 snidg 4599 . . . . 5 (∅ ∈ V → ∅ ∈ {∅})
1210, 11mp1i 13 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → ∅ ∈ {∅})
13 oveq1 7314 . . . . . . 7 (𝑁 = ∅ → (𝑁 Mat 𝑅) = (∅ Mat 𝑅))
1413adantr 482 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑁 Mat 𝑅) = (∅ Mat 𝑅))
1514fveq2d 6808 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → (Base‘(𝑁 Mat 𝑅)) = (Base‘(∅ Mat 𝑅)))
16 mat0dimbas0 21660 . . . . . 6 (𝑅𝑉 → (Base‘(∅ Mat 𝑅)) = {∅})
1716adantl 483 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → (Base‘(∅ Mat 𝑅)) = {∅})
1815, 17eqtrd 2776 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → (Base‘(𝑁 Mat 𝑅)) = {∅})
1912, 18eleqtrrd 2840 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → ∅ ∈ (Base‘(𝑁 Mat 𝑅)))
20 eqidd 2737 . . . . . 6 (𝑁 = ∅ → ∅ = ∅)
21 el1o 8356 . . . . . 6 (∅ ∈ 1o ↔ ∅ = ∅)
2220, 21sylibr 233 . . . . 5 (𝑁 = ∅ → ∅ ∈ 1o)
23 oveq2 7315 . . . . . 6 (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅))
24 fvex 6817 . . . . . . 7 (Base‘𝑅) ∈ V
25 map0e 8701 . . . . . . 7 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑m ∅) = 1o)
2624, 25mp1i 13 . . . . . 6 (𝑁 = ∅ → ((Base‘𝑅) ↑m ∅) = 1o)
2723, 26eqtrd 2776 . . . . 5 (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = 1o)
2822, 27eleqtrrd 2840 . . . 4 (𝑁 = ∅ → ∅ ∈ ((Base‘𝑅) ↑m 𝑁))
2928adantr 482 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → ∅ ∈ ((Base‘𝑅) ↑m 𝑁))
301, 2, 3, 4, 5, 9, 19, 29mavmulval 21739 . 2 ((𝑁 = ∅ ∧ 𝑅𝑉) → (∅ · ∅) = (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))))
31 mpteq1 5174 . . . 4 (𝑁 = ∅ → (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))) = (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))))
3231adantr 482 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))) = (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))))
33 mpt0 6605 . . 3 (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))) = ∅
3432, 33eqtrdi 2792 . 2 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑗)(.r𝑅)(∅‘𝑗))))) = ∅)
3530, 34eqtrd 2776 1 ((𝑁 = ∅ ∧ 𝑅𝑉) → (∅ · ∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  Vcvv 3437  c0 4262  {csn 4565  cop 4571  cmpt 5164  cfv 6458  (class class class)co 7307  1oc1o 8321  m cmap 8646  Fincfn 8764  Basecbs 16957  .rcmulr 17008   Σg cgsu 17196   Mat cmat 21599   maVecMul cmvmul 21734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-ot 4574  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-ixp 8717  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9173  df-sup 9245  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-z 12366  df-dec 12484  df-uz 12629  df-fz 13286  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-mulr 17021  df-sca 17023  df-vsca 17024  df-ip 17025  df-tset 17026  df-ple 17027  df-ds 17029  df-hom 17031  df-cco 17032  df-0g 17197  df-prds 17203  df-pws 17205  df-sra 20479  df-rgmod 20480  df-dsmm 20984  df-frlm 20999  df-mat 21600  df-mvmul 21735
This theorem is referenced by:  mavmul0g  21747  cramer0  21884
  Copyright terms: Public domain W3C validator