| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mavmul0 | Structured version Visualization version GIF version | ||
| Description: Multiplication of a 0-dimensional matrix with a 0-dimensional vector. (Contributed by AV, 28-Feb-2019.) |
| Ref | Expression |
|---|---|
| mavmul0.t | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
| Ref | Expression |
|---|---|
| mavmul0 | ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (∅ · ∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
| 2 | mavmul0.t | . . 3 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
| 3 | eqid 2731 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | eqid 2731 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | simpr 484 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) | |
| 6 | 0fi 8964 | . . . . 5 ⊢ ∅ ∈ Fin | |
| 7 | eleq1 2819 | . . . . 5 ⊢ (𝑁 = ∅ → (𝑁 ∈ Fin ↔ ∅ ∈ Fin)) | |
| 8 | 6, 7 | mpbiri 258 | . . . 4 ⊢ (𝑁 = ∅ → 𝑁 ∈ Fin) |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ Fin) |
| 10 | 0ex 5245 | . . . . 5 ⊢ ∅ ∈ V | |
| 11 | snidg 4613 | . . . . 5 ⊢ (∅ ∈ V → ∅ ∈ {∅}) | |
| 12 | 10, 11 | mp1i 13 | . . . 4 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ∅ ∈ {∅}) |
| 13 | oveq1 7353 | . . . . . . 7 ⊢ (𝑁 = ∅ → (𝑁 Mat 𝑅) = (∅ Mat 𝑅)) | |
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (𝑁 Mat 𝑅) = (∅ Mat 𝑅)) |
| 15 | 14 | fveq2d 6826 | . . . . 5 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (Base‘(𝑁 Mat 𝑅)) = (Base‘(∅ Mat 𝑅))) |
| 16 | mat0dimbas0 22379 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (Base‘(∅ Mat 𝑅)) = {∅}) | |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (Base‘(∅ Mat 𝑅)) = {∅}) |
| 18 | 15, 17 | eqtrd 2766 | . . . 4 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (Base‘(𝑁 Mat 𝑅)) = {∅}) |
| 19 | 12, 18 | eleqtrrd 2834 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ∅ ∈ (Base‘(𝑁 Mat 𝑅))) |
| 20 | eqidd 2732 | . . . . . 6 ⊢ (𝑁 = ∅ → ∅ = ∅) | |
| 21 | el1o 8410 | . . . . . 6 ⊢ (∅ ∈ 1o ↔ ∅ = ∅) | |
| 22 | 20, 21 | sylibr 234 | . . . . 5 ⊢ (𝑁 = ∅ → ∅ ∈ 1o) |
| 23 | oveq2 7354 | . . . . . 6 ⊢ (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅)) | |
| 24 | fvex 6835 | . . . . . . 7 ⊢ (Base‘𝑅) ∈ V | |
| 25 | map0e 8806 | . . . . . . 7 ⊢ ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑m ∅) = 1o) | |
| 26 | 24, 25 | mp1i 13 | . . . . . 6 ⊢ (𝑁 = ∅ → ((Base‘𝑅) ↑m ∅) = 1o) |
| 27 | 23, 26 | eqtrd 2766 | . . . . 5 ⊢ (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = 1o) |
| 28 | 22, 27 | eleqtrrd 2834 | . . . 4 ⊢ (𝑁 = ∅ → ∅ ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → ∅ ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 30 | 1, 2, 3, 4, 5, 9, 19, 29 | mavmulval 22458 | . 2 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (∅ · ∅) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗)))))) |
| 31 | mpteq1 5180 | . . . 4 ⊢ (𝑁 = ∅ → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗)))))) | |
| 32 | 31 | adantr 480 | . . 3 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗)))))) |
| 33 | mpt0 6623 | . . 3 ⊢ (𝑖 ∈ ∅ ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = ∅ | |
| 34 | 32, 33 | eqtrdi 2782 | . 2 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖∅𝑗)(.r‘𝑅)(∅‘𝑗))))) = ∅) |
| 35 | 30, 34 | eqtrd 2766 | 1 ⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ 𝑉) → (∅ · ∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 {csn 4576 〈cop 4582 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 ↑m cmap 8750 Fincfn 8869 Basecbs 17117 .rcmulr 17159 Σg cgsu 17341 Mat cmat 22320 maVecMul cmvmul 22453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-hom 17182 df-cco 17183 df-0g 17342 df-prds 17348 df-pws 17350 df-sra 21105 df-rgmod 21106 df-dsmm 21667 df-frlm 21682 df-mat 22321 df-mvmul 22454 |
| This theorem is referenced by: mavmul0g 22466 cramer0 22603 |
| Copyright terms: Public domain | W3C validator |