| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elecex | Structured version Visualization version GIF version | ||
| Description: Condition for a coset to be a set. (Contributed by Peter Mazsa, 4-May-2019.) |
| Ref | Expression |
|---|---|
| elecex | ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecexg 8626 | . 2 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → [𝐵](𝑅 ↾ 𝐴) ∈ V) | |
| 2 | elecreseq 8671 | . . 3 ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = [𝐵]𝑅) | |
| 3 | 2 | eleq1d 2816 | . 2 ⊢ (𝐵 ∈ 𝐴 → ([𝐵](𝑅 ↾ 𝐴) ∈ V ↔ [𝐵]𝑅 ∈ V)) |
| 4 | 1, 3 | syl5ibcom 245 | 1 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ↾ cres 5616 [cec 8620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 |
| This theorem is referenced by: ecelqs 8692 uniqs 8698 |
| Copyright terms: Public domain | W3C validator |