| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elecex | Structured version Visualization version GIF version | ||
| Description: Condition for a coset to be a set. (Contributed by Peter Mazsa, 4-May-2019.) |
| Ref | Expression |
|---|---|
| elecex | ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecexg 8677 | . 2 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → [𝐵](𝑅 ↾ 𝐴) ∈ V) | |
| 2 | elecreseq 8722 | . . 3 ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = [𝐵]𝑅) | |
| 3 | 2 | eleq1d 2814 | . 2 ⊢ (𝐵 ∈ 𝐴 → ([𝐵](𝑅 ↾ 𝐴) ∈ V ↔ [𝐵]𝑅 ∈ V)) |
| 4 | 1, 3 | syl5ibcom 245 | 1 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 ↾ cres 5642 [cec 8671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-cnv 5648 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ec 8675 |
| This theorem is referenced by: ecelqs 8743 uniqs 8749 |
| Copyright terms: Public domain | W3C validator |