![]() |
Metamath
Proof Explorer Theorem List (p. 87 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | oe1m 8601 | Ordinal exponentiation with a base of 1. Proposition 8.31(3) of [TakeutiZaring] p. 67. Lemma 2.17 of [Schloeder] p. 6. (Contributed by NM, 2-Jan-2005.) |
⊢ (𝐴 ∈ On → (1o ↑o 𝐴) = 1o) | ||
Theorem | oaordi 8602 | Ordering property of ordinal addition. Proposition 8.4 of [TakeutiZaring] p. 58. (Contributed by NM, 5-Dec-2004.) |
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) | ||
Theorem | oaord 8603 | Ordering property of ordinal addition. Proposition 8.4 of [TakeutiZaring] p. 58 and its converse. (Contributed by NM, 5-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) | ||
Theorem | oacan 8604 | Left cancellation law for ordinal addition. Corollary 8.5 of [TakeutiZaring] p. 58. (Contributed by NM, 5-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | oaword 8605 | Weak ordering property of ordinal addition. (Contributed by NM, 6-Dec-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))) | ||
Theorem | oawordri 8606 | Weak ordering property of ordinal addition. Proposition 8.7 of [TakeutiZaring] p. 59. (Contributed by NM, 7-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))) | ||
Theorem | oaord1 8607 | An ordinal is less than its sum with a nonzero ordinal. Theorem 18 of [Suppes] p. 209 and its converse. (Contributed by NM, 6-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵 ↔ 𝐴 ∈ (𝐴 +o 𝐵))) | ||
Theorem | oaword1 8608 | An ordinal is less than or equal to its sum with another. Part of Exercise 5 of [TakeutiZaring] p. 62. Lemma 3.2 of [Schloeder] p. 7. (For the other part see oaord1 8607.) (Contributed by NM, 6-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵)) | ||
Theorem | oaword2 8609 | An ordinal is less than or equal to its sum with another. Theorem 21 of [Suppes] p. 209. Lemma 3.3 of [Schloeder] p. 7. (Contributed by NM, 7-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴)) | ||
Theorem | oawordeulem 8610* | Lemma for oawordex 8613. (Contributed by NM, 11-Dec-2004.) |
⊢ 𝐴 ∈ On & ⊢ 𝐵 ∈ On & ⊢ 𝑆 = {𝑦 ∈ On ∣ 𝐵 ⊆ (𝐴 +o 𝑦)} ⇒ ⊢ (𝐴 ⊆ 𝐵 → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) | ||
Theorem | oawordeu 8611* | Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of [TakeutiZaring] p. 59. (Contributed by NM, 11-Dec-2004.) |
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) | ||
Theorem | oawordexr 8612* | Existence theorem for weak ordering of ordinal sum. (Contributed by NM, 12-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) → 𝐴 ⊆ 𝐵) | ||
Theorem | oawordex 8613* | Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of [TakeutiZaring] p. 59 and its converse. See oawordeu 8611 for uniqueness. (Contributed by NM, 12-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)) | ||
Theorem | oaordex 8614* | Existence theorem for ordering of ordinal sum. Similar to Proposition 4.34(f) of [Mendelson] p. 266 and its converse. (Contributed by NM, 12-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) | ||
Theorem | oa00 8615 | An ordinal sum is zero iff both of its arguments are zero. Lemma 3.10 of [Schloeder] p. 8. (Contributed by NM, 6-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) | ||
Theorem | oalimcl 8616 | The ordinal sum with a limit ordinal is a limit ordinal. Proposition 8.11 of [TakeutiZaring] p. 60. Lemma 3.4 of [Schloeder] p. 7. (Contributed by NM, 8-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → Lim (𝐴 +o 𝐵)) | ||
Theorem | oaass 8617 | Ordinal addition is associative. Theorem 25 of [Suppes] p. 211. Theorem 4.2 of [Schloeder] p. 11. (Contributed by NM, 10-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))) | ||
Theorem | oarec 8618* | Recursive definition of ordinal addition. Exercise 25 of [Enderton] p. 240. (Contributed by NM, 26-Dec-2004.) (Revised by Mario Carneiro, 30-May-2015.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))) | ||
Theorem | oaf1o 8619* | Left addition by a constant is a bijection from ordinals to ordinals greater than the constant. (Contributed by Mario Carneiro, 30-May-2015.) |
⊢ (𝐴 ∈ On → (𝑥 ∈ On ↦ (𝐴 +o 𝑥)):On–1-1-onto→(On ∖ 𝐴)) | ||
Theorem | oacomf1olem 8620* | Lemma for oacomf1o 8621. (Contributed by Mario Carneiro, 30-May-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ⇒ ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴–1-1-onto→ran 𝐹 ∧ (ran 𝐹 ∩ 𝐵) = ∅)) | ||
Theorem | oacomf1o 8621* | Define a bijection from 𝐴 +o 𝐵 to 𝐵 +o 𝐴. Thus, the two are equinumerous even if they are not equal (which sometimes occurs, e.g., oancom 9720). (Contributed by Mario Carneiro, 30-May-2015.) |
⊢ 𝐹 = ((𝑥 ∈ 𝐴 ↦ (𝐵 +o 𝑥)) ∪ ◡(𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) ⇒ ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 +o 𝐵)–1-1-onto→(𝐵 +o 𝐴)) | ||
Theorem | omordi 8622 | Ordering property of ordinal multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63. Lemma 3.15 of [Schloeder] p. 9. (Contributed by NM, 14-Dec-2004.) |
⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ 𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) | ||
Theorem | omord2 8623 | Ordering property of ordinal multiplication. (Contributed by NM, 25-Dec-2004.) |
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) | ||
Theorem | omord 8624 | Ordering property of ordinal multiplication. Proposition 8.19 of [TakeutiZaring] p. 63. Theorem 3.16 of [Schloeder] p. 9. (Contributed by NM, 14-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) | ||
Theorem | omcan 8625 | Left cancellation law for ordinal multiplication. Proposition 8.20 of [TakeutiZaring] p. 63 and its converse. (Contributed by NM, 14-Dec-2004.) |
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | omword 8626 | Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004.) |
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) | ||
Theorem | omwordi 8627 | Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) | ||
Theorem | omwordri 8628 | Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶))) | ||
Theorem | omword1 8629 | An ordinal is less than or equal to its product with another. Lemma 3.11 of [Schloeder] p. 8. (Contributed by NM, 21-Dec-2004.) |
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐴 ·o 𝐵)) | ||
Theorem | omword2 8630 | An ordinal is less than or equal to its product with another. Lemma 3.12 of [Schloeder] p. 9. (Contributed by NM, 21-Dec-2004.) |
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐵 ·o 𝐴)) | ||
Theorem | om00 8631 | The product of two ordinal numbers is zero iff at least one of them is zero. Proposition 8.22 of [TakeutiZaring] p. 64. (Contributed by NM, 21-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))) | ||
Theorem | om00el 8632 | The product of two nonzero ordinal numbers is nonzero. (Contributed by NM, 28-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))) | ||
Theorem | omordlim 8633* | Ordering involving the product of a limit ordinal. Proposition 8.23 of [TakeutiZaring] p. 64. (Contributed by NM, 25-Dec-2004.) |
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐷 ∧ Lim 𝐵)) ∧ 𝐶 ∈ (𝐴 ·o 𝐵)) → ∃𝑥 ∈ 𝐵 𝐶 ∈ (𝐴 ·o 𝑥)) | ||
Theorem | omlimcl 8634 | The product of any nonzero ordinal with a limit ordinal is a limit ordinal. Proposition 8.24 of [TakeutiZaring] p. 64. (Contributed by NM, 25-Dec-2004.) |
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝐵)) | ||
Theorem | odi 8635 | Distributive law for ordinal arithmetic (left-distributivity). Proposition 8.25 of [TakeutiZaring] p. 64. Theorem 4.3 of [Schloeder] p. 12. (Contributed by NM, 26-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) | ||
Theorem | omass 8636 | Multiplication of ordinal numbers is associative. Theorem 8.26 of [TakeutiZaring] p. 65. Theorem 4.4 of [Schloeder] p. 13. (Contributed by NM, 28-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))) | ||
Theorem | oneo 8637 | If an ordinal number is even, its successor is odd. (Contributed by NM, 26-Jan-2006.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵)) | ||
Theorem | omeulem1 8638* | Lemma for omeu 8641: existence part. (Contributed by Mario Carneiro, 28-Feb-2013.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) | ||
Theorem | omeulem2 8639 | Lemma for omeu 8641: uniqueness part. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 29-May-2015.) |
⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) → ((𝐵 ∈ 𝐷 ∨ (𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸))) | ||
Theorem | omopth2 8640 | An ordered pair-like theorem for ordinal multiplication. (Contributed by Mario Carneiro, 29-May-2015.) |
⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) → (((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸) ↔ (𝐵 = 𝐷 ∧ 𝐶 = 𝐸))) | ||
Theorem | omeu 8641* | The division algorithm for ordinal multiplication. (Contributed by Mario Carneiro, 28-Feb-2013.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃!𝑧∃𝑥 ∈ On ∃𝑦 ∈ 𝐴 (𝑧 = 〈𝑥, 𝑦〉 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) | ||
Theorem | oen0 8642 | Ordinal exponentiation with a nonzero base is nonzero. Proposition 8.32 of [TakeutiZaring] p. 67. (Contributed by NM, 4-Jan-2005.) |
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴 ↑o 𝐵)) | ||
Theorem | oeordi 8643 | Ordering law for ordinal exponentiation. Proposition 8.33 of [TakeutiZaring] p. 67. (Contributed by NM, 5-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ∈ 𝐵 → (𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵))) | ||
Theorem | oeord 8644 | Ordering property of ordinal exponentiation. Corollary 8.34 of [TakeutiZaring] p. 68 and its converse. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ∈ 𝐵 ↔ (𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵))) | ||
Theorem | oecan 8645 | Left cancellation law for ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
⊢ ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ↑o 𝐵) = (𝐴 ↑o 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | oeword 8646 | Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵))) | ||
Theorem | oewordi 8647 | Weak ordering property of ordinal exponentiation. Lemma 3.19 of [Schloeder] p. 10. (Contributed by NM, 6-Jan-2005.) |
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 → (𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵))) | ||
Theorem | oewordri 8648 | Weak ordering property of ordinal exponentiation. Proposition 8.35 of [TakeutiZaring] p. 68. (Contributed by NM, 6-Jan-2005.) |
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 ↑o 𝐶) ⊆ (𝐵 ↑o 𝐶))) | ||
Theorem | oeworde 8649 | Ordinal exponentiation compared to its exponent. Proposition 8.37 of [TakeutiZaring] p. 68. Lemma 3.20 of [Schloeder] p. 10. (Contributed by NM, 7-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
⊢ ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 ↑o 𝐵)) | ||
Theorem | oeordsuc 8650 | Ordering property of ordinal exponentiation with a successor exponent. Corollary 8.36 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.) |
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 ↑o suc 𝐶) ∈ (𝐵 ↑o suc 𝐶))) | ||
Theorem | oelim2 8651* | Ordinal exponentiation with a limit exponent. Part of Exercise 4.36 of [Mendelson] p. 250. (Contributed by NM, 6-Jan-2005.) |
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ (𝐵 ∖ 1o)(𝐴 ↑o 𝑥)) | ||
Theorem | oeoalem 8652 | Lemma for oeoa 8653. (Contributed by Eric Schmidt, 26-May-2009.) |
⊢ 𝐴 ∈ On & ⊢ ∅ ∈ 𝐴 & ⊢ 𝐵 ∈ On ⇒ ⊢ (𝐶 ∈ On → (𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶))) | ||
Theorem | oeoa 8653 | Sum of exponents law for ordinal exponentiation. Theorem 8R of [Enderton] p. 238. Also Proposition 8.41 of [TakeutiZaring] p. 69. Theorem 4.7 of [Schloeder] p. 14. (Contributed by Eric Schmidt, 26-May-2009.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶))) | ||
Theorem | oeoelem 8654 | Lemma for oeoe 8655. (Contributed by Eric Schmidt, 26-May-2009.) |
⊢ 𝐴 ∈ On & ⊢ ∅ ∈ 𝐴 ⇒ ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ↑o 𝐵) ↑o 𝐶) = (𝐴 ↑o (𝐵 ·o 𝐶))) | ||
Theorem | oeoe 8655 | Product of exponents law for ordinal exponentiation. Theorem 8S of [Enderton] p. 238. Also Proposition 8.42 of [TakeutiZaring] p. 70. (Contributed by Eric Schmidt, 26-May-2009.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ↑o 𝐵) ↑o 𝐶) = (𝐴 ↑o (𝐵 ·o 𝐶))) | ||
Theorem | oelimcl 8656 | The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015.) |
⊢ ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → Lim (𝐴 ↑o 𝐵)) | ||
Theorem | oeeulem 8657* | Lemma for oeeu 8659. (Contributed by Mario Carneiro, 28-Feb-2013.) |
⊢ 𝑋 = ∪ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑o 𝑥)} ⇒ ⊢ ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝑋 ∈ On ∧ (𝐴 ↑o 𝑋) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 ↑o suc 𝑋))) | ||
Theorem | oeeui 8658* | The division algorithm for ordinal exponentiation. (This version of oeeu 8659 gives an explicit expression for the unique solution of the equation, in terms of the solution 𝑃 to omeu 8641.) (Contributed by Mario Carneiro, 25-May-2015.) |
⊢ 𝑋 = ∪ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑o 𝑥)} & ⊢ 𝑃 = (℩𝑤∃𝑦 ∈ On ∃𝑧 ∈ (𝐴 ↑o 𝑋)(𝑤 = 〈𝑦, 𝑧〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵)) & ⊢ 𝑌 = (1st ‘𝑃) & ⊢ 𝑍 = (2nd ‘𝑃) ⇒ ⊢ ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴 ↑o 𝐶)) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐶 = 𝑋 ∧ 𝐷 = 𝑌 ∧ 𝐸 = 𝑍))) | ||
Theorem | oeeu 8659* | The division algorithm for ordinal exponentiation. (Contributed by Mario Carneiro, 25-May-2015.) |
⊢ ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃!𝑤∃𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴 ↑o 𝑥)(𝑤 = 〈𝑥, 𝑦, 𝑧〉 ∧ (((𝐴 ↑o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) | ||
Theorem | nna0 8660 | Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.) |
⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) | ||
Theorem | nnm0 8661 | Multiplication with zero. Theorem 4J(A1) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) |
⊢ (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅) | ||
Theorem | nnasuc 8662 | Addition with successor. Theorem 4I(A2) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵)) | ||
Theorem | nnmsuc 8663 | Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴)) | ||
Theorem | nnesuc 8664 | Exponentiation with a successor exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by Mario Carneiro, 14-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ↑o suc 𝐵) = ((𝐴 ↑o 𝐵) ·o 𝐴)) | ||
Theorem | nna0r 8665 | Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. Note: In this and later theorems, we deliberately avoid the more general ordinal versions of these theorems (in this case oa0r 8594) so that we can avoid ax-rep 5303, which is not needed for finite recursive definitions. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
⊢ (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴) | ||
Theorem | nnm0r 8666 | Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅) | ||
Theorem | nnacl 8667 | Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω) | ||
Theorem | nnmcl 8668 | Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) | ||
Theorem | nnecl 8669 | Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ↑o 𝐵) ∈ ω) | ||
Theorem | nnacli 8670 | ω is closed under addition. Inference form of nnacl 8667. (Contributed by Scott Fenton, 20-Apr-2012.) |
⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω ⇒ ⊢ (𝐴 +o 𝐵) ∈ ω | ||
Theorem | nnmcli 8671 | ω is closed under multiplication. Inference form of nnmcl 8668. (Contributed by Scott Fenton, 20-Apr-2012.) |
⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω ⇒ ⊢ (𝐴 ·o 𝐵) ∈ ω | ||
Theorem | nnarcl 8672 | Reverse closure law for addition of natural numbers. Exercise 1 of [TakeutiZaring] p. 62 and its converse. (Contributed by NM, 12-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ ω))) | ||
Theorem | nnacom 8673 | Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴)) | ||
Theorem | nnaordi 8674 | Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) | ||
Theorem | nnaord 8675 | Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) | ||
Theorem | nnaordr 8676 | Ordering property of addition of natural numbers. (Contributed by NM, 9-Nov-2002.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶))) | ||
Theorem | nnawordi 8677 | Adding to both sides of an inequality in ω. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))) | ||
Theorem | nnaass 8678 | Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))) | ||
Theorem | nndi 8679 | Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) | ||
Theorem | nnmass 8680 | Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))) | ||
Theorem | nnmsucr 8681 | Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵)) | ||
Theorem | nnmcom 8682 | Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) | ||
Theorem | nnaword 8683 | Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))) | ||
Theorem | nnacan 8684 | Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | nnaword1 8685 | Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝐵)) | ||
Theorem | nnaword2 8686 | Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ⊆ (𝐵 +o 𝐴)) | ||
Theorem | nnmordi 8687 | Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ 𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) | ||
Theorem | nnmord 8688 | Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) | ||
Theorem | nnmword 8689 | Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) | ||
Theorem | nnmcan 8690 | Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | nnmwordi 8691 | Weak ordering property of multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) | ||
Theorem | nnmwordri 8692 | Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶))) | ||
Theorem | nnawordex 8693* | Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)) | ||
Theorem | nnaordex 8694* | Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) | ||
Theorem | nnaordex2 8695* | Equivalence for ordering. (Contributed by Scott Fenton, 18-Apr-2025.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵)) | ||
Theorem | 1onn 8696 | The ordinal 1 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7770, see 1onnALT 8697. Lemma 2.2 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7770. (Revised by BTernaryTau, 1-Dec-2024.) |
⊢ 1o ∈ ω | ||
Theorem | 1onnALT 8697 | Shorter proof of 1onn 8696 using Peano's postulates that depends on ax-un 7770. (Contributed by NM, 29-Oct-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 1o ∈ ω | ||
Theorem | 2onn 8698 | The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7770, see 2onnALT 8699. (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7770. (Revised by BTernaryTau, 1-Dec-2024.) |
⊢ 2o ∈ ω | ||
Theorem | 2onnALT 8699 | Shorter proof of 2onn 8698 using Peano's postulates that depends on ax-un 7770. (Contributed by NM, 28-Sep-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 2o ∈ ω | ||
Theorem | 3onn 8700 | The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ 3o ∈ ω |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |