MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elecreseq Structured version   Visualization version   GIF version

Theorem elecreseq 8697
Description: The restricted coset of 𝐵 when 𝐵 is an element of the restriction. (Contributed by Peter Mazsa, 16-Oct-2018.)
Assertion
Ref Expression
elecreseq (𝐵𝐴 → [𝐵](𝑅𝐴) = [𝐵]𝑅)

Proof of Theorem elecreseq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elecres 8696 . . . . 5 (𝑦 ∈ V → (𝑦 ∈ [𝐵](𝑅𝐴) ↔ (𝐵𝐴𝐵𝑅𝑦)))
21elv 3449 . . . 4 (𝑦 ∈ [𝐵](𝑅𝐴) ↔ (𝐵𝐴𝐵𝑅𝑦))
32baib 535 . . 3 (𝐵𝐴 → (𝑦 ∈ [𝐵](𝑅𝐴) ↔ 𝐵𝑅𝑦))
43eqabdv 2861 . 2 (𝐵𝐴 → [𝐵](𝑅𝐴) = {𝑦𝐵𝑅𝑦})
5 dfec2 8651 . 2 (𝐵𝐴 → [𝐵]𝑅 = {𝑦𝐵𝑅𝑦})
64, 5eqtr4d 2767 1 (𝐵𝐴 → [𝐵](𝑅𝐴) = [𝐵]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3444   class class class wbr 5102  cres 5633  [cec 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ec 8650
This theorem is referenced by:  elecex  8698  eccnvepres2  38246  eldmqsres  38248  qsresid  38286
  Copyright terms: Public domain W3C validator