![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruurn | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun 10791 for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruurn | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ∪ ran 𝐹 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapg 8830 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐹 ∈ (𝑈 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝑈)) | |
2 | elgrug 10784 | . . . . . . 7 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | |
3 | 2 | ibi 267 | . . . . . 6 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈))) |
4 | 3 | simprd 495 | . . . . 5 ⊢ (𝑈 ∈ Univ → ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)) |
5 | rneq 5926 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐹 → ran 𝑦 = ran 𝐹) | |
6 | 5 | unieqd 4913 | . . . . . . . . 9 ⊢ (𝑦 = 𝐹 → ∪ ran 𝑦 = ∪ ran 𝐹) |
7 | 6 | eleq1d 2810 | . . . . . . . 8 ⊢ (𝑦 = 𝐹 → (∪ ran 𝑦 ∈ 𝑈 ↔ ∪ ran 𝐹 ∈ 𝑈)) |
8 | 7 | rspccv 3601 | . . . . . . 7 ⊢ (∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈 → (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈)) |
9 | 8 | 3ad2ant3 1132 | . . . . . 6 ⊢ ((𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈) → (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈)) |
10 | 9 | ralimi 3075 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈) → ∀𝑥 ∈ 𝑈 (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈)) |
11 | oveq2 7410 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑈 ↑m 𝑥) = (𝑈 ↑m 𝐴)) | |
12 | 11 | eleq2d 2811 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐹 ∈ (𝑈 ↑m 𝑥) ↔ 𝐹 ∈ (𝑈 ↑m 𝐴))) |
13 | 12 | imbi1d 341 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈) ↔ (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈))) |
14 | 13 | rspccv 3601 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑈 (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈) → (𝐴 ∈ 𝑈 → (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈))) |
15 | 4, 10, 14 | 3syl 18 | . . . 4 ⊢ (𝑈 ∈ Univ → (𝐴 ∈ 𝑈 → (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈))) |
16 | 15 | imp 406 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈)) |
17 | 1, 16 | sylbird 260 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐹:𝐴⟶𝑈 → ∪ ran 𝐹 ∈ 𝑈)) |
18 | 17 | 3impia 1114 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ∪ ran 𝐹 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3053 𝒫 cpw 4595 {cpr 4623 ∪ cuni 4900 Tr wtr 5256 ran crn 5668 ⟶wf 6530 (class class class)co 7402 ↑m cmap 8817 Univcgru 10782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-tr 5257 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-map 8819 df-gru 10783 |
This theorem is referenced by: gruiun 10791 grurn 10793 intgru 10806 |
Copyright terms: Public domain | W3C validator |