MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruurn Structured version   Visualization version   GIF version

Theorem gruurn 10790
Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun 10791 for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruurn ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran 𝐹𝑈)

Proof of Theorem gruurn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapg 8830 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐹 ∈ (𝑈m 𝐴) ↔ 𝐹:𝐴𝑈))
2 elgrug 10784 . . . . . . 7 (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
32ibi 267 . . . . . 6 (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈)))
43simprd 495 . . . . 5 (𝑈 ∈ Univ → ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))
5 rneq 5926 . . . . . . . . . 10 (𝑦 = 𝐹 → ran 𝑦 = ran 𝐹)
65unieqd 4913 . . . . . . . . 9 (𝑦 = 𝐹 ran 𝑦 = ran 𝐹)
76eleq1d 2810 . . . . . . . 8 (𝑦 = 𝐹 → ( ran 𝑦𝑈 ran 𝐹𝑈))
87rspccv 3601 . . . . . . 7 (∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈 → (𝐹 ∈ (𝑈m 𝑥) → ran 𝐹𝑈))
983ad2ant3 1132 . . . . . 6 ((𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → (𝐹 ∈ (𝑈m 𝑥) → ran 𝐹𝑈))
109ralimi 3075 . . . . 5 (∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → ∀𝑥𝑈 (𝐹 ∈ (𝑈m 𝑥) → ran 𝐹𝑈))
11 oveq2 7410 . . . . . . . 8 (𝑥 = 𝐴 → (𝑈m 𝑥) = (𝑈m 𝐴))
1211eleq2d 2811 . . . . . . 7 (𝑥 = 𝐴 → (𝐹 ∈ (𝑈m 𝑥) ↔ 𝐹 ∈ (𝑈m 𝐴)))
1312imbi1d 341 . . . . . 6 (𝑥 = 𝐴 → ((𝐹 ∈ (𝑈m 𝑥) → ran 𝐹𝑈) ↔ (𝐹 ∈ (𝑈m 𝐴) → ran 𝐹𝑈)))
1413rspccv 3601 . . . . 5 (∀𝑥𝑈 (𝐹 ∈ (𝑈m 𝑥) → ran 𝐹𝑈) → (𝐴𝑈 → (𝐹 ∈ (𝑈m 𝐴) → ran 𝐹𝑈)))
154, 10, 143syl 18 . . . 4 (𝑈 ∈ Univ → (𝐴𝑈 → (𝐹 ∈ (𝑈m 𝐴) → ran 𝐹𝑈)))
1615imp 406 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐹 ∈ (𝑈m 𝐴) → ran 𝐹𝑈))
171, 16sylbird 260 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐹:𝐴𝑈 ran 𝐹𝑈))
18173impia 1114 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran 𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053  𝒫 cpw 4595  {cpr 4623   cuni 4900  Tr wtr 5256  ran crn 5668  wf 6530  (class class class)co 7402  m cmap 8817  Univcgru 10782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-tr 5257  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-map 8819  df-gru 10783
This theorem is referenced by:  gruiun  10791  grurn  10793  intgru  10806
  Copyright terms: Public domain W3C validator