| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gruurn | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun 10821 for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| gruurn | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ∪ ran 𝐹 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapg 8861 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐹 ∈ (𝑈 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝑈)) | |
| 2 | elgrug 10814 | . . . . . . 7 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | |
| 3 | 2 | ibi 267 | . . . . . 6 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈))) |
| 4 | 3 | simprd 495 | . . . . 5 ⊢ (𝑈 ∈ Univ → ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)) |
| 5 | rneq 5927 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐹 → ran 𝑦 = ran 𝐹) | |
| 6 | 5 | unieqd 4900 | . . . . . . . . 9 ⊢ (𝑦 = 𝐹 → ∪ ran 𝑦 = ∪ ran 𝐹) |
| 7 | 6 | eleq1d 2818 | . . . . . . . 8 ⊢ (𝑦 = 𝐹 → (∪ ran 𝑦 ∈ 𝑈 ↔ ∪ ran 𝐹 ∈ 𝑈)) |
| 8 | 7 | rspccv 3602 | . . . . . . 7 ⊢ (∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈 → (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈)) |
| 9 | 8 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈) → (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈)) |
| 10 | 9 | ralimi 3072 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈) → ∀𝑥 ∈ 𝑈 (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈)) |
| 11 | oveq2 7421 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑈 ↑m 𝑥) = (𝑈 ↑m 𝐴)) | |
| 12 | 11 | eleq2d 2819 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐹 ∈ (𝑈 ↑m 𝑥) ↔ 𝐹 ∈ (𝑈 ↑m 𝐴))) |
| 13 | 12 | imbi1d 341 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈) ↔ (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈))) |
| 14 | 13 | rspccv 3602 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑈 (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈) → (𝐴 ∈ 𝑈 → (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈))) |
| 15 | 4, 10, 14 | 3syl 18 | . . . 4 ⊢ (𝑈 ∈ Univ → (𝐴 ∈ 𝑈 → (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈))) |
| 16 | 15 | imp 406 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈)) |
| 17 | 1, 16 | sylbird 260 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐹:𝐴⟶𝑈 → ∪ ran 𝐹 ∈ 𝑈)) |
| 18 | 17 | 3impia 1117 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ∪ ran 𝐹 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 𝒫 cpw 4580 {cpr 4608 ∪ cuni 4887 Tr wtr 5239 ran crn 5666 ⟶wf 6537 (class class class)co 7413 ↑m cmap 8848 Univcgru 10812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-tr 5240 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8850 df-gru 10813 |
| This theorem is referenced by: gruiun 10821 grurn 10823 intgru 10836 |
| Copyright terms: Public domain | W3C validator |