| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gruurn | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun 10752 for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| gruurn | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ∪ ran 𝐹 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapg 8812 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐹 ∈ (𝑈 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝑈)) | |
| 2 | elgrug 10745 | . . . . . . 7 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | |
| 3 | 2 | ibi 267 | . . . . . 6 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈))) |
| 4 | 3 | simprd 495 | . . . . 5 ⊢ (𝑈 ∈ Univ → ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)) |
| 5 | rneq 5900 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐹 → ran 𝑦 = ran 𝐹) | |
| 6 | 5 | unieqd 4884 | . . . . . . . . 9 ⊢ (𝑦 = 𝐹 → ∪ ran 𝑦 = ∪ ran 𝐹) |
| 7 | 6 | eleq1d 2813 | . . . . . . . 8 ⊢ (𝑦 = 𝐹 → (∪ ran 𝑦 ∈ 𝑈 ↔ ∪ ran 𝐹 ∈ 𝑈)) |
| 8 | 7 | rspccv 3585 | . . . . . . 7 ⊢ (∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈 → (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈)) |
| 9 | 8 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈) → (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈)) |
| 10 | 9 | ralimi 3066 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈) → ∀𝑥 ∈ 𝑈 (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈)) |
| 11 | oveq2 7395 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑈 ↑m 𝑥) = (𝑈 ↑m 𝐴)) | |
| 12 | 11 | eleq2d 2814 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐹 ∈ (𝑈 ↑m 𝑥) ↔ 𝐹 ∈ (𝑈 ↑m 𝐴))) |
| 13 | 12 | imbi1d 341 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈) ↔ (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈))) |
| 14 | 13 | rspccv 3585 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑈 (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈) → (𝐴 ∈ 𝑈 → (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈))) |
| 15 | 4, 10, 14 | 3syl 18 | . . . 4 ⊢ (𝑈 ∈ Univ → (𝐴 ∈ 𝑈 → (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈))) |
| 16 | 15 | imp 406 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈)) |
| 17 | 1, 16 | sylbird 260 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐹:𝐴⟶𝑈 → ∪ ran 𝐹 ∈ 𝑈)) |
| 18 | 17 | 3impia 1117 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ∪ ran 𝐹 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 𝒫 cpw 4563 {cpr 4591 ∪ cuni 4871 Tr wtr 5214 ran crn 5639 ⟶wf 6507 (class class class)co 7387 ↑m cmap 8799 Univcgru 10743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-gru 10744 |
| This theorem is referenced by: gruiun 10752 grurn 10754 intgru 10767 |
| Copyright terms: Public domain | W3C validator |