MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruurn Structured version   Visualization version   GIF version

Theorem gruurn 10485
Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun 10486 for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruurn ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran 𝐹𝑈)

Proof of Theorem gruurn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapg 8586 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐹 ∈ (𝑈m 𝐴) ↔ 𝐹:𝐴𝑈))
2 elgrug 10479 . . . . . . 7 (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
32ibi 266 . . . . . 6 (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈)))
43simprd 495 . . . . 5 (𝑈 ∈ Univ → ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))
5 rneq 5834 . . . . . . . . . 10 (𝑦 = 𝐹 → ran 𝑦 = ran 𝐹)
65unieqd 4850 . . . . . . . . 9 (𝑦 = 𝐹 ran 𝑦 = ran 𝐹)
76eleq1d 2823 . . . . . . . 8 (𝑦 = 𝐹 → ( ran 𝑦𝑈 ran 𝐹𝑈))
87rspccv 3549 . . . . . . 7 (∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈 → (𝐹 ∈ (𝑈m 𝑥) → ran 𝐹𝑈))
983ad2ant3 1133 . . . . . 6 ((𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → (𝐹 ∈ (𝑈m 𝑥) → ran 𝐹𝑈))
109ralimi 3086 . . . . 5 (∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → ∀𝑥𝑈 (𝐹 ∈ (𝑈m 𝑥) → ran 𝐹𝑈))
11 oveq2 7263 . . . . . . . 8 (𝑥 = 𝐴 → (𝑈m 𝑥) = (𝑈m 𝐴))
1211eleq2d 2824 . . . . . . 7 (𝑥 = 𝐴 → (𝐹 ∈ (𝑈m 𝑥) ↔ 𝐹 ∈ (𝑈m 𝐴)))
1312imbi1d 341 . . . . . 6 (𝑥 = 𝐴 → ((𝐹 ∈ (𝑈m 𝑥) → ran 𝐹𝑈) ↔ (𝐹 ∈ (𝑈m 𝐴) → ran 𝐹𝑈)))
1413rspccv 3549 . . . . 5 (∀𝑥𝑈 (𝐹 ∈ (𝑈m 𝑥) → ran 𝐹𝑈) → (𝐴𝑈 → (𝐹 ∈ (𝑈m 𝐴) → ran 𝐹𝑈)))
154, 10, 143syl 18 . . . 4 (𝑈 ∈ Univ → (𝐴𝑈 → (𝐹 ∈ (𝑈m 𝐴) → ran 𝐹𝑈)))
1615imp 406 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐹 ∈ (𝑈m 𝐴) → ran 𝐹𝑈))
171, 16sylbird 259 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐹:𝐴𝑈 ran 𝐹𝑈))
18173impia 1115 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran 𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  𝒫 cpw 4530  {cpr 4560   cuni 4836  Tr wtr 5187  ran crn 5581  wf 6414  (class class class)co 7255  m cmap 8573  Univcgru 10477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-gru 10478
This theorem is referenced by:  gruiun  10486  grurn  10488  intgru  10501
  Copyright terms: Public domain W3C validator