MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruurn Structured version   Visualization version   GIF version

Theorem gruurn 10751
Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun 10752 for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruurn ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran 𝐹𝑈)

Proof of Theorem gruurn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapg 8812 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐹 ∈ (𝑈m 𝐴) ↔ 𝐹:𝐴𝑈))
2 elgrug 10745 . . . . . . 7 (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))))
32ibi 267 . . . . . 6 (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈)))
43simprd 495 . . . . 5 (𝑈 ∈ Univ → ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈))
5 rneq 5900 . . . . . . . . . 10 (𝑦 = 𝐹 → ran 𝑦 = ran 𝐹)
65unieqd 4884 . . . . . . . . 9 (𝑦 = 𝐹 ran 𝑦 = ran 𝐹)
76eleq1d 2813 . . . . . . . 8 (𝑦 = 𝐹 → ( ran 𝑦𝑈 ran 𝐹𝑈))
87rspccv 3585 . . . . . . 7 (∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈 → (𝐹 ∈ (𝑈m 𝑥) → ran 𝐹𝑈))
983ad2ant3 1135 . . . . . 6 ((𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → (𝐹 ∈ (𝑈m 𝑥) → ran 𝐹𝑈))
109ralimi 3066 . . . . 5 (∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈m 𝑥) ran 𝑦𝑈) → ∀𝑥𝑈 (𝐹 ∈ (𝑈m 𝑥) → ran 𝐹𝑈))
11 oveq2 7395 . . . . . . . 8 (𝑥 = 𝐴 → (𝑈m 𝑥) = (𝑈m 𝐴))
1211eleq2d 2814 . . . . . . 7 (𝑥 = 𝐴 → (𝐹 ∈ (𝑈m 𝑥) ↔ 𝐹 ∈ (𝑈m 𝐴)))
1312imbi1d 341 . . . . . 6 (𝑥 = 𝐴 → ((𝐹 ∈ (𝑈m 𝑥) → ran 𝐹𝑈) ↔ (𝐹 ∈ (𝑈m 𝐴) → ran 𝐹𝑈)))
1413rspccv 3585 . . . . 5 (∀𝑥𝑈 (𝐹 ∈ (𝑈m 𝑥) → ran 𝐹𝑈) → (𝐴𝑈 → (𝐹 ∈ (𝑈m 𝐴) → ran 𝐹𝑈)))
154, 10, 143syl 18 . . . 4 (𝑈 ∈ Univ → (𝐴𝑈 → (𝐹 ∈ (𝑈m 𝐴) → ran 𝐹𝑈)))
1615imp 406 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐹 ∈ (𝑈m 𝐴) → ran 𝐹𝑈))
171, 16sylbird 260 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (𝐹:𝐴𝑈 ran 𝐹𝑈))
18173impia 1117 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐹:𝐴𝑈) → ran 𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  𝒫 cpw 4563  {cpr 4591   cuni 4871  Tr wtr 5214  ran crn 5639  wf 6507  (class class class)co 7387  m cmap 8799  Univcgru 10743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-gru 10744
This theorem is referenced by:  gruiun  10752  grurn  10754  intgru  10767
  Copyright terms: Public domain W3C validator