Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gruurn | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun 10413 for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruurn | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ∪ ran 𝐹 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapg 8521 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐹 ∈ (𝑈 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝑈)) | |
2 | elgrug 10406 | . . . . . . 7 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | |
3 | 2 | ibi 270 | . . . . . 6 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈))) |
4 | 3 | simprd 499 | . . . . 5 ⊢ (𝑈 ∈ Univ → ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈)) |
5 | rneq 5805 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐹 → ran 𝑦 = ran 𝐹) | |
6 | 5 | unieqd 4833 | . . . . . . . . 9 ⊢ (𝑦 = 𝐹 → ∪ ran 𝑦 = ∪ ran 𝐹) |
7 | 6 | eleq1d 2822 | . . . . . . . 8 ⊢ (𝑦 = 𝐹 → (∪ ran 𝑦 ∈ 𝑈 ↔ ∪ ran 𝐹 ∈ 𝑈)) |
8 | 7 | rspccv 3534 | . . . . . . 7 ⊢ (∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈 → (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈)) |
9 | 8 | 3ad2ant3 1137 | . . . . . 6 ⊢ ((𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈) → (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈)) |
10 | 9 | ralimi 3083 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑈) → ∀𝑥 ∈ 𝑈 (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈)) |
11 | oveq2 7221 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑈 ↑m 𝑥) = (𝑈 ↑m 𝐴)) | |
12 | 11 | eleq2d 2823 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐹 ∈ (𝑈 ↑m 𝑥) ↔ 𝐹 ∈ (𝑈 ↑m 𝐴))) |
13 | 12 | imbi1d 345 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈) ↔ (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈))) |
14 | 13 | rspccv 3534 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑈 (𝐹 ∈ (𝑈 ↑m 𝑥) → ∪ ran 𝐹 ∈ 𝑈) → (𝐴 ∈ 𝑈 → (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈))) |
15 | 4, 10, 14 | 3syl 18 | . . . 4 ⊢ (𝑈 ∈ Univ → (𝐴 ∈ 𝑈 → (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈))) |
16 | 15 | imp 410 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐹 ∈ (𝑈 ↑m 𝐴) → ∪ ran 𝐹 ∈ 𝑈)) |
17 | 1, 16 | sylbird 263 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐹:𝐴⟶𝑈 → ∪ ran 𝐹 ∈ 𝑈)) |
18 | 17 | 3impia 1119 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ∪ ran 𝐹 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 𝒫 cpw 4513 {cpr 4543 ∪ cuni 4819 Tr wtr 5161 ran crn 5552 ⟶wf 6376 (class class class)co 7213 ↑m cmap 8508 Univcgru 10404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-map 8510 df-gru 10405 |
This theorem is referenced by: gruiun 10413 grurn 10415 intgru 10428 |
Copyright terms: Public domain | W3C validator |